首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   1篇
测绘学   21篇
大气科学   8篇
地球物理   107篇
地质学   56篇
天文学   19篇
自然地理   22篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2014年   5篇
  2013年   8篇
  2011年   6篇
  2010年   4篇
  2009年   9篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   8篇
  2003年   7篇
  2001年   6篇
  1999年   5篇
  1998年   3篇
  1997年   7篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1986年   7篇
  1985年   6篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1973年   6篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1964年   3篇
  1961年   3篇
  1960年   3篇
排序方式: 共有233条查询结果,搜索用时 15 毫秒
81.
Summary The method of two-component spectral analysis is described in two versions: as the so-called static analysis, in which the pulsation sample being studied is treated as a whole, and as the dynamic analysis, in which the given sample is processed piecewise in order to determine the time variations of various parameters. Both versions were applied to geomagnetic pi2 pulsations. The pi2 oscillations are resolved into several frequency components. The properties of these components are studied in dependence on the frequency and local time. The time variation of the amplitude (attenuation) and the polarization characteristics (precession) of pi2's are also studied.  相似文献   
82.
Mesozoic to Recent volcanic rocks from a transect of the Central Andes between latitudes 26 ° and 28 ° South in northern Chile and Argentina show chemical and temporal zonation with respect to the Peru-Chile trench. Jurassic to Eocene lavas occur closer to the trench and are comparable to calc-alkaline rocks of island arcs. Eastwards they are followed by Miocene to Quaternary sequences of typical continental margin calc-alkaline rocks which have higher contents of K, Rb, Sr, Ba, Zr, and REE and also higher K/Na and La/Yb ratios. The rocks occurring farthest from the trench have shoshonitic affinities. The distribution of major and trace elements is consistent with a model in which magmas were derived by anatexis of an upper mantle source already enriched in LILE and located above the descending oceanic slab. It is suggested that the chemical variations across the volcanic belt reflect systematic changes in the composition of the magmas due to a decreasing degree of partial melting with increasing depth, and probably also due to the heterogeneity of the source materials.  相似文献   
83.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   
84.
A combination of four thermochronometers [zircon fission track (ZFT), zircon (U–Th)/He (ZHe), apatite fission track (AFT) and apatite (U–Th–[Sm])/He (AHe) dating methods] applied to a valley to ridge transect is used to resolve the issues of metamorphic, exhumation and topographic evolution of the Nízke Tatry Mts. in the Western Carpathians. The ZFT ages of 132.1 ± 8.3, 155.1 ± 12.9, 146.8 ± 8.6 and 144.9 ± 11.0 Ma show that Variscan crystalline basement of the Nízke Tatry Mts. was heated to temperatures >210°C during the Mesozoic and experienced a low-grade Alpine metamorphic overprint. ZHe and AFT ages, clustering at ~55–40 and ~45–40 Ma, respectively, revealed a rapid Eocene cooling event, documenting erosional and/or tectonic exhumation related to the collapse of the Carpathian orogenic wedge. This is the first evidence that exhumation of crystalline cores in the Western Carpathians took place in the Eocene and not in the Cretaceous as traditionally believed. Bimodal AFT length distributions, Early Miocene AHe ages and thermal modelling results suggest that the samples were heated to temperatures of ~55–90°C during Oligocene–Miocene times. This thermal event may be related either to the Oligocene/Miocene sedimentary burial, or Miocene magmatic activity and increased heat flow. This finding supports the concept of thermal instability of the Carpathian crystalline bodies during the post-Eocene period.  相似文献   
85.
We examine the dependence of glacial-isostatic adjustment (GIA) due to changes in the Vatnajökull Ice Cap, Iceland, on the underlying viscosity structure. Iceland offers a unique case study for GIA research, with a thinner elastic lithosphere underlain by a low-viscosity zone or asthenosphere, as opposed to regions such as Fennoscandia or North America described by a thicker lithosphere, while not necessarily featuring an asthenosphere.A laterally homogeneous spherical earth model is used consisting of an elastic lithosphere, a viscoelastic asthenosphere, a viscoelastic upper and lower mantle and a fluid core. We examine the response of the earth model to three ice models with circular plans and cross-section profiles based on the assumption of perfectly plastic material, but with different load histories. These are: (1) A history where the ice cap grows from a AD 900 minimum to a maximum at 1890, followed by a uniform decrease until 1991, continuing to the present day at an average rate based on recent mass-balance measurements, (2) a history that is the same as the first, except for constant ice volumes prior to 1890, and (3) a history that is again the same as the first model, except that the post-1991 changes correspond to the measured mass-balance values. We first compare the response to each ice model using typical earth-model parameters for Iceland presented in the literature. We then undertake a parameter-space search, where we assess the importance of lithosphere thickness, asthenosphere viscosity and basal asthenosphere depth, to predicted vertical-displacement rates, and compare them to rates determined from GPS measurements obtained from campaigns conducted between 1991 and 1999.The earth-viscosity structure that provides the optimum predictions with respect to the GPS-derived vertical-displacement rates consists of an elastic lithosphere with a thickness of between 20 and 30 km, an asthenosphere viscosity between 1 and 2 × 1018 Pa s, and a basal asthenosphere depth between 250 km and possibly greater than 400 km. We find that the very low asthenosphere viscosity values of ca. 1017 Pa s sometimes suggested in the literature are not necessary to account for the rapid vertical-displacement rates observed, which are the result of the contemporary decrease in the mass of the ice cap not considered previously.  相似文献   
86.
Summary The mechanism of beating of Pc3 type pulsations is studied. Using the method of numerical computation of a sonagram (the method of frequency-time analysis) a set of samples of pulsations from the Budkov Observatory is treated (1968–1969) mostly at K-indices equal to 2–3. By comparing f–t diagrams with the spectra of the samples an attempt has been made at interpreting the beating as a superposition of the frequency components, contained in the pulsation signal. In most observed cases it is possible to determine two close frequencies, the difference of which is on the average =5.4 mHz. The average carrier frequency of the samples was =37.6 mHz, and the average frequency of the beating =2.7 mHz. The interval of observed values of fB amounted to 1–5 mHz. A tendency was observed for fB to increase with increasing degree of disturbance of the geomagnetic field.  相似文献   
87.
A magnetic signature of tree rings was tested as a potential paleo-climatic indicator. We examined wood from sequoia tree, located in Mountain Home State Forest, California, whose tree ring record spans over the period 600 – 1700 A.D. We measured low and high-field magnetic susceptibility, the natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and stability against thermal and alternating field (AF) demagnetization. Magnetic investigation of the 200 mm long sequoia material suggests that magnetic efficiency of natural remanence may be a sensitive paleoclimate indicator because it is substantially higher (in average >1%) during the Medieval Warm Epoch (700–1300 A.D.) than during the Little Ice Age (1300–1850 A.D.) where it is <1%. Diamagnetic behavior has been noted to be prevalent in regions with higher tree ring density. The mineralogical nature of the remanence carrier was not directly detected but maghemite is suggested due to low coercivity and absence of Verwey transition. Tree ring density, along with the wood's magnetic remanence efficiency, records the Little Ice Age (LIA) well documented in Europe. Such a record suggests that the European LIA was a global phenomenon. Magnetic analysis of the thermal stability reveals the blocking temperatures near 200 degree C. This phenomenon suggests that the remanent component in this tree may be thermal in origin and was controlled by local thermal condition.  相似文献   
88.
89.
The low-grade metavolcanic/volcanosedimentary complex of the Devonian Vrbno Group (Silesicum, NE Bohemian Massif, Czech Republic) occurs in two ~NE–SW trending belts, separated by tectonic slices of Cadomian metagranitic paraautochton. (1) The basic–intermediate lavas of the calc-alkaline Western Volcanic Belt came from a moderately depleted mantle $ \left( {\varepsilon_{\text{Nd}}^{370} \sim + 3} \right) $ . Rare rhyolites (374.0 ± 1.7 Ma: 2σ, LA–ICP–MS U–Pb Zrn) were derived most likely from immature crust or by extensive fractionation of primary basaltic melts. The rock association is interpreted as a vestige of a deeply dissected continental arc. (2) The Eastern Volcanic Belt consists mainly of (nearly) contemporaneous (371.0 ± 1.4 Ma) felsic alkaline lavas with high HFSE contents, as well as high Ga/Al and Fe/Mg ratios, typical of within-plate igneous setting. The petrology and Nd–Sr isotopic data point to a high-T anatexis of a young metagranitic crust, resembling the Cadomian (Brunovistulian) basement, in a back-arc setting. The attenuated Brunovistulian lithosphere could have partially melted by the heat provided by the upwelling asthenosphere and/or underplating basic magma. (3) Finally, the region was penetrated by numerous subalkaline, MORB/EMORB-like dolerite sheets—a hallmark of the considerable crustal thinning.  相似文献   
90.
Summary In the introductory part of the paper, a method of computing spectra by computer is described, which cuts down the computer time required without using the Fast Fourier Transformation. Windows which can be used to adjust the resultant spectrum are described. The spectra of a constant, a linear function, a sine function, of the superposition of two sine functions and of the superposition of a sine function with a constant and linear function are described in detail and it is demonstrated how these spectra change when different types of windows are used. The suitability of the separate windows for various purposes is discussed. Finally, in the case of the superposition of two sine oscillations it is shown under what conditions the two frequency components can be distinguished.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号