首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75227篇
  免费   1250篇
  国内免费   696篇
测绘学   1796篇
大气科学   5359篇
地球物理   15184篇
地质学   26566篇
海洋学   6551篇
天文学   16917篇
综合类   224篇
自然地理   4576篇
  2022年   415篇
  2021年   744篇
  2020年   821篇
  2019年   878篇
  2018年   1962篇
  2017年   1824篇
  2016年   2340篇
  2015年   1418篇
  2014年   2273篇
  2013年   3958篇
  2012年   2402篇
  2011年   3292篇
  2010年   2731篇
  2009年   3693篇
  2008年   3421篇
  2007年   3195篇
  2006年   3048篇
  2005年   2493篇
  2004年   2392篇
  2003年   2237篇
  2002年   2051篇
  2001年   1862篇
  2000年   1792篇
  1999年   1441篇
  1998年   1533篇
  1997年   1440篇
  1996年   1153篇
  1995年   1216篇
  1994年   1030篇
  1993年   923篇
  1992年   913篇
  1991年   798篇
  1990年   911篇
  1989年   767篇
  1988年   698篇
  1987年   872篇
  1986年   711篇
  1985年   917篇
  1984年   998篇
  1983年   923篇
  1982年   895篇
  1981年   755篇
  1980年   717篇
  1979年   657篇
  1978年   653篇
  1977年   586篇
  1976年   586篇
  1975年   548篇
  1974年   542篇
  1973年   516篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
The purpose of this paper is the canonical connection of classical global gravity field determination following the concept of Stokes (Trans Camb Philos Soc 8:672–712, 1849), Bruns (Die Figur der Erde, Publikation Königl. Preussisch. Geodätisches Institut, P. Stankiewicz Buchdruckerei, Berlin, 1878), and Neumann (Vorlesungen über die Theorie des Potentials und der Kugelfunktionen. Teubner, Leipzig, pp 135–154, 1887) on the one hand and modern locally oriented multiscale computation by use of adaptive locally supported wavelets on the other hand. The essential tools are regularization methods of the Green, Neumann, and Stokes integral representations. The multiscale approximation is guaranteed simply as linear difference scheme by use of Green, Neumann, and Stokes wavelets. As an application, gravity anomalies caused by plumes are investigated for the Hawaiian and Iceland areas.  相似文献   
172.

Background

Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle.

Results

The dry season (represented by Julian day 35–46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 μmol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 μmol m-2s-1 and then levels off.

Conclusion

Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season 2005. The small sink during the dry season is surprising and similar dry season sinks have not to our knowledge been reported from other similar savanna ecosystems and could have potential management implications for agroforestry. A strong response of NEE versus small changes in plant available soil water content was found. Collection and analysis of flux data for several consecutive years including variations in precipitation, available soil moisture and labile soil carbon are needed for understanding the year to year variation of the carbon budget of this grass land/sparse savanna site in semi arid Sudan.  相似文献   
173.
The study evaluated the performance and suitability of AnnAGNPS model in assessing runoff, sediment loading and nutrient loading under Malaysian conditions. The watershed of River Kuala Tasik in Malaysia, a combination of two sub-watersheds, was selected as the area of study. The data for the year 2004 was used to calibrate the model and the data for the year 2005 was used for validation purposes. Several input parameters were computed using methods suggested by other researchers and studies carried out in Malaysia. The study shows that runoff was predicted well with an overall R2 value of 0.90 and E value of 0.70. Sediment loading was able to produce a moderate result of R2 = 0.66 and E = 0.49, nitrogen loading predictions were slightly better with R2 = 0.68 and E = 0.53, and phosphorus loading performance was slightly poor with an R2 = 0.63 and E = 0.33. The erosion map developed was in agreement with the erosion risk map produced by the Department of Agriculture, Malaysia. Rubber estates and urban areas were found to be the main contributors to soil erosion. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for planning and management of watersheds under Malaysian conditions.  相似文献   
174.
This article presents a modular photogrammetric recording and image analysis system for inspecting the material characteristics of transparent foils, in particular Ethylen–TetraFluorEthylen-Copolymer (ETFE) foils. The foils are put under increasing air pressure and are observed by a stereo camera system. Determining the time-variable 3D shape of transparent material imposes a number of challenges: especially the automatic point transfer between stereo images and, in temporal domain, from one image pair to the next. We developed an automatic approach that accommodates for these particular circumstances and allows reconstruction of the 3D shape for each epoch as well as determining 3D translation vectors between epochs by feature tracking. Examples including numerical results and accuracy measures prove the applicability of the system.  相似文献   
175.
An algorithm for considering time-correlated errors in a Kalman filter is presented. The algorithm differs from previous implementations in that it does not suffer from numerical problems; does not contain inherent time latency or require reinterpretation of Kalman filter parameters, and gives full consideration to additive white noise that is often still present but ignored in previous implementations. Simulation results indicate that the application of the new algorithm yields more realistic and therefore useful state and covariance information than the standard implementation. Results from a field test of the algorithm applied to the problem of kinematic differential GPS demonstrate that the algorithm provides slightly pessimistic covariance estimates whereas the standard Kalman filter provides optimistic covariance estimates.  相似文献   
176.
177.
The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project “Concepts for future gravity field satellite missions” as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a “GRACE Follow-on” mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line “Bender” mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2–4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees ${<}50$ ), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular the severe restriction of heterodyne lasers on maximum range-rates, only the moderate Pendulum and the Bender-mission are beneficial options, of course in addition to GRACE and GRACE-FO. Furthermore, a Bender-type constellation would result in the most accurate gravity field solution by a factor of about 12 at long wavelengths (up to degree/order 40) and by a factor of about 200 at short wavelengths (up to degree/order 120) compared to the present GRACE solution. Finally, we suggest the Pendulum and the Bender missions as candidate mission configurations depending on the available budget and technological progress.  相似文献   
178.
Systematic errors at harmonics of the GPS draconitic year have been found in diverse GPS-derived geodetic products like the geocenter $Z$ -component, station coordinates, $Y$ -pole rate and orbits (i.e. orbit overlaps). The GPS draconitic year is the repeat period of the GPS constellation w.r.t. the Sun which is about 351 days. Different error sources have been proposed which could generate these spurious signals at the draconitic harmonics. In this study, we focus on one of these error sources, namely the radiation pressure orbit modeling deficiencies. For this purpose, three GPS+GLONASS solutions of 8 years (2004–2011) were computed which differ only in the solar radiation pressure (SRP) and satellite attitude models. The models employed in the solutions are: (1) the CODE (5-parameter) radiation pressure model widely used within the International GNSS Service community, (2) the adjustable box-wing model for SRP impacting GPS (and GLONASS) satellites, and (3) the adjustable box-wing model upgraded to use non-nominal yaw attitude, specially for satellites in eclipse seasons. When comparing the first solution with the third one we achieved the following in the GNSS geodetic products. Orbits: the draconitic errors in the orbit overlaps are reduced for the GPS satellites in all the harmonics on average 46, 38 and 57 % for the radial, along-track and cross-track components, while for GLONASS satellites they are mainly reduced in the cross-track component by 39 %. Geocenter $Z$ -component: all the odd draconitic harmonics found when the CODE model is used show a very important reduction (almost disappearing with a 92 % average reduction) with the new radiation pressure models. Earth orientation parameters: the draconitic errors are reduced for the $X$ -pole rate and especially for the $Y$ -pole rate by 24 and 50 % respectively. Station coordinates: all the draconitic harmonics (except the 2nd harmonic in the North component) are reduced in the North, East and Height components, with average reductions of 41, 39 and 35 % respectively. This shows, that part of the draconitic errors currently found in GNSS geodetic products are definitely induced by the CODE radiation pressure orbit modeling deficiencies.  相似文献   
179.
Since last few decades RS-GIS is playing vital role in studying and mapping spatiotemporal responses of land cover, however, as a matter of fact, the mapping outputs largely depend on the expert's/user's preferences because location specific and people specific land cover classification systems are adopted autonomously for image classification in GIS. This may actually lead to an ambiguous definition of a particular land cover type when such different maps are compared at global level. In 1993, FAO and UNEP started efforts for development of a software tool know as LCCS which is a comprehensive standardized tool capable of providing land cover characterization to all possible land cover types in the world regardless of spatial relevance, mapping scale, data collection method etc. Adding to the global efforts of land cover legend harmonization and mapping, this study presents development of harmonized land cover legends for Namdapha National Park located in north-eastern Indian Himalayan region using LCCS and subsequent mapping. The potential of Remote Sensing (RS) and Geographical Information Systems (GIS) in forest/land cover mapping is very well recognized. Therefore, adopting the developed harmonized legends for the study area, land cover mapping was done using RS-GIS approach.  相似文献   
180.
We present the new MAP3 algorithms to perform static precise point positioning (PPP) from multifrequency and multisystem GNSS observations. MAP3 represents a two-step strategy in which the least squares theory is applied twice to estimate smoothed pseudo-distances, initial phase ambiguities, and slant ionospheric delay first, and the absolute receiver position and its clock offset in a second adjustment. Unlike the classic PPP technique, in our new approach, the ionospheric-free linear combination is not used. The combination of signals from different satellite systems is accomplished by taking into account the receiver inter-system bias. MAP3 has been implemented in MATLAB and integrated within a complete PPP software developed on site and named PCube. We test the MAP3 performance numerically and contrast it with other external PPP programs. In general, MAP3 positioning accuracy with low-noise GPS dual-frequency observations is about 2.5 cm in 2-h observation periods, 1 cm in 10 h, and 7 mm after 1 day. This means an improvement in the accuracy in short observation periods of at least 7 mm with respect to the other PPP programs. The MAP3 convergence time is also analyzed and some results obtained from real triple-frequency GPS and GIOVE observations are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号