首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   5篇
  国内免费   2篇
测绘学   7篇
大气科学   1篇
地球物理   28篇
地质学   57篇
海洋学   2篇
天文学   5篇
综合类   3篇
自然地理   5篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   9篇
  2017年   6篇
  2016年   8篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1978年   1篇
排序方式: 共有108条查询结果,搜索用时 46 毫秒
81.
The best evaporation estimate method for Alexandria Eastern Harbor has been derived following the evaluation of performance of five evaporation estimate methods, namely, (1) Bowen ratio energy balance (BREB), (2) De Bruin–Keijman (DK), (3) Priestley–Taylor (PT), (4) Brutsaert–Stricker (BS), and (5) Penman (PM), based on two consecutive summer seasons of 2010 and 2011 data. Different statistical measurements of goodness of fit, namely, coefficient of determination (R2), root mean square error (RMSE), relative bias (RB), and index of agreement (D) have been chosen for the evaluation of the performance. When the Bowen ratio is known a priori, the DK and PT methods have been found the best evaporation estimate methods. The responses of the three methods BREB, DK, and PT were found comparable to each other, while the PM method response differed to match with the responses of the other three methods. The Bowen ration (β) of 0.05 and Priestley–Taylor (PT) coefficient (α) of 1.23 derived from the analysis can be extended for evaporation estimates in Alexandria Eastern Harbor, Egypt.  相似文献   
82.
This article assesses drought status in the Yarmouk Basin (YB), in northern Jordan, using the Standardized Precipitation Index (SPI), the Standardized Water-Level Index (SWI), and the Percent Departure from Normal rainfall (PDNimd) during the years 1993–2014. The results showed that the YB suffers from frequent and irregular periods of drought as variations in drought intensity and frequency have been observed. The SPI results revealed that the highest drought magnitude of ??2.34 appeared at Nuaimeh rainfall station in 1991. This station has also experienced severe drought particularly in years 1995, 1999, 2005, and 2012 with SPI values ranging from ??1.51 to ??1.59. Some other rainfall stations such as Baqura, Ibbin, Khanasiri, Kharja, Mafraq police, Ramtha, Turra, and Umm Qais have also suffered several periods of drought mostly in 1993. The SWI results show the highest extreme drought events in 2001 in Souf well while other extreme drought periods were observed at Wadi Elyabis well in 1994 and at Mafraq well in 1995. As compared to SPI maps, our SWI maps reflect severe and extreme drought events in most years, negatively impacting the groundwater levels in the study area.  相似文献   
83.
During the last 25 years, rapid and unplanned land reclamation activity has been carried out in the areas located in both south and east of Wadi El - Natrun Depression of Egypt. Accordingly, negative effects on groundwater levels and vulnerability are frequently caused by localized high levels of abstraction and the return-flow of polluted irrigation water respectively. A groundwater model is a computational method that presents an approximation of an underground water system. In this study the groundwater system is simulated both in quantity and quality by using Mass Balance Transfer Model (NETPATH), Groundwater Modeling System (GMS) and DRASTIC Model to investigate the water - rock interactions, groundwater levels drawdown and vulnerability respectively. Three main geochemical processes namely dedolomitisation, dissolution of halite and silicate weathering were estimated during the flow path. The present over-abstraction of groundwater (105.84 million m3/year) has induced a general head drawdown from 3 to 40 m in years 2015 and 2050 respectively. Best estimate using a 3D GMS hydraulic model was (157000 m3/day) a strategy proposed for the management of groundwater without critical depletion (second scenario). The results document the extent to which a high drawdown can greatly reach 4 m by the end of simulation year 2050. The vulnerability maps of groundwater were constructed using the DRASTIC index method. The results indicated that, the southeastern and central portions of the study area are having high vulnerability rate (> 110). Modified DRASTIC map showed many more dominant high risk areas in the eastern parts of the study area that were low risk, which may be attributed to return flow of polluted irrigation water.  相似文献   
84.
Seismic discriminants based on the spectral seismogram and spectral magnitude techniques have been tested to discriminate between three events; a nuclear explosion which took place in Lop Nor, China with m b 6.1 and two earthquakes from the closest area with m b 5.5 and 5.3, respectively. The spectral seismogram of the three events shows that the frequency content of the nuclear explosion differs from that of the earthquakes where the P wave is richier in high frequency content in the nuclear explosion than the corresponding earthquakes. It is also observed that the energy decays more rapidly for the nuclear explosion than for the earthquakes. Furthermore, the spectral magnitudes reveal significant differences in the spectra between the nuclear explosion and the two earthquakes. The observed differences appear to be quite enough to provide a reliable discriminant. The estimated stress drop from the magnitude spectra indicates a higher stress drop of the nuclear explosion relative to the earthquakes of the same tectonic region.  相似文献   
85.
Various numerical methods have been used in the literature to simulate single and multiphase flow in fractured media. A promising approach is the use of the discrete-fracture model where the fracture entities in the permeable media are described explicitly in the computational grid. In this work, we present a critical review of the main conventional methods for multiphase flow in fractured media including the finite difference (FD), finite volume (FV), and finite element (FE) methods, that are coupled with the discrete-fracture model. All the conventional methods have inherent limitations in accuracy and applications. The FD method, for example, is restricted to horizontal and vertical fractures. The accuracy of the vertex-centered FV method depends on the size of the matrix gridcells next to the fractures; for an acceptable accuracy the matrix gridcells next to the fractures should be small. The FE method cannot describe properly the saturation discontinuity at the matrix–fracture interface. In this work, we introduce a new approach that is free from the limitations of the conventional methods. Our proposed approach is applicable in 2D and 3D unstructured griddings with low mesh orientation effect; it captures the saturation discontinuity from the contrast in capillary pressure between the rock matrix and fractures. The matrix–fracture and fracture–fracture fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides, in addition to the gridcell pressures, the pressures at the gridcell interfaces and can readily model the pressure discontinuities at impermeable faults in a simple way. To reduce the numerical dispersion, we use the discontinuous Galerkin (DG) method to approximate the saturation equation. We take advantage of a hybrid time scheme to alleviate the restrictions on the size of the time step in the fracture network. Several numerical examples in 2D and 3D demonstrate the robustness of the proposed model. Results show the significance of capillary pressure and orders of magnitude increase in computational speed compared to previous works.  相似文献   
86.
87.
According to topography of Yemen, most areas and villages are located at obligated crest, toe of mountain and under cliffs. Therefore Al-Huwayshah consisting of Tawilah sandstone group is characterized by steep slope reach to 90℃ in some areas. This area is affected by strong tectonic movements and faults that occurred during the geological epochs. This effect enhances to find out fractures and joints as well as the rocks become brittle and ready to slide depending on the position of area. And there are some fractures and joints on the surface of the areas due to tectonic movement associated with opening the Red Sea and Gulf of Aden. The rainfalls, fractures, joints, earthquakes, gravity, vegetations, temperatures and human activities play a big role in the processes of rockfalls and landslides in this area. All those factors are considered as the basic causes and catalyzed factors for occurrence of rockfall in the studide area. In addition, the authors carried out laboratory test for many rock samples to get the physical properties of the rocks.  相似文献   
88.
This study assessed land cover change and topographic elevation on selected soil quality parameters in the Kasso catchment, southeastern Ethiopia. Twenty‐seven soil samples collected from 0–30cm depth under four land cover types across three elevation gradients were analysed for selected soil quality parameters. Results indicated that soil particle size distribution is different (p<0.001) in the catchment because of the effect of land cover change and elevation. Most cultivated lands occupy lower elevations where clay accumulates as a result of its movement from higher to lower elevations. Ploughing accentuates weathering, making cultivated lands richer in finer materials. Cation exchange capacity and exchangeable magnesium and potassium negatively correlated with elevation, total nitrogen and available phosphorous. Conversion of natural vegetation to cropland contributed to changes in pH (p<0.05), exchangeable calcium (p<0.01), potassium (p<0.001), available phosphorous (p<0.01) and nitrogen (p<0.01) contents. Parameter soil degradation index results showed that soil organic carbon, nitrogen, available phosphorous and exchangeable potassium contents declined and bulk density increased because of the land cover change. This negative effect on agricultural development and environmental health of the catchment makes an integrated land resource management approach indispensable for sustaining agricultural productivity and the environmental health of the Kasso catchment.  相似文献   
89.
Landfilled wastes manifest slow decomposition, producing emanation of gases, and outflow of leachate. Waste mass shows various chemical reactions and complex evolutions that occur under the influence of natural agents, as rain and microorganisms. These reactions lead to biological, physical, and chemical transformations of wastes. The intensity of the phenomenon is related to the air and the humidity. These factors originate from the initial composition of the solid waste, the operating mode of the landfill, and the geological and hydrogeological conditions. Leachate is considered a major source of groundwater pollution. It has a complex nature; it typically contains high concentrations of chemical hazardous including heavy metals, chemical compounds that may severely pollute the environment. These challenges are faced all over the world by environment protection agencies and waste management bodies. The challenge differs according to the specific situation of the site, the climatic, environmental, and geological factors. The international literature is rich with studies in this concern. Each country or region of the world has its own legislation and laws governing waste management, e.g., the European Commission Legislation, the US Environmental Agency, and so forth. The main objective of this study is to shed light on the environmental consequences of a landfill site located in the southeast of Riyadh City, Saudi Arabia. It constitutes a peculiar case because of its situation, its exploitation mode, and nature of buried wastes. The study made use of satellite MSS, TM, ETM and SPOT image 2007, and Digital Elevation Model (DEM), respectively. Geological, morphological, hydrological, hydrochemical, and detailed drainage analyses were performed. Records of meteorological stations were also used in this study. The satellite images illustrate the evolution of the site through time since its start in the 1990s of the twentieth century. The main geological units outcropping in the area are the Sulaiy Formation, the Yamama Formation, Khabra deposits, floodplain deposits, alluvium, and sheet gravel. Drainage analyses shows a dendritic nature for the network, a total area of 2,113 km2, basin slope of 0.016, perimeter of 430?×?103, and a mean elevation of 635 m. Annual rainfall is around 100 mm, evapotranspiration is about 2,900 mm, wind speed averages at 5.1 km/h, and runoff peak is within 2.7–4.7 m3/s. A plume of total dissolved solids and nitrates was observed to initiate from the landfill site. Heavy metal concentration confirms the same result. Planners, environmentalists, decision makers, and other interest groups can use the findings of this study for environmental management of the landfill and protection of the downstream part of the Sulaiy tributary from leachate contamination. The results indicate the importance of monitoring landfills through the combined use of ground and satellite monitoring.  相似文献   
90.
ABSTRACT

Somalia has frequently been affected by droughts, famines and water-related humanitarian crises. Water is scarce and the only perennial streams, the Juba and Shabelle rivers, are trans-boundary with river flows mainly originating from the Ethiopian highlands. In both riparian countries water demands are projected to increase. This paper reveals the impact of rising regional water abstractions on stream flows by illustrating sectoral demands and joining them into scenarios of medium and high population and economic growth. These scenarios are associated to the time horizons of 2035 and 2055, respectively. The scenarios disclose alarming trends especially for the Shabelle River: in the medium and high growth scenarios, water demands surpass the available river flows by 200 and 3500 hm3, respectively. The calculated deficits partly derive from conflicting assumptions about river flows by the two main riparian countries, an obstacle to any integrated planning efforts and sustained regional development.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR F. Hattermann  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号