首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   7篇
  国内免费   1篇
测绘学   17篇
大气科学   39篇
地球物理   55篇
地质学   154篇
海洋学   15篇
天文学   99篇
综合类   6篇
自然地理   24篇
  2022年   4篇
  2018年   6篇
  2017年   6篇
  2016年   11篇
  2015年   9篇
  2014年   12篇
  2013年   24篇
  2012年   7篇
  2011年   13篇
  2010年   18篇
  2009年   22篇
  2008年   17篇
  2007年   12篇
  2006年   14篇
  2005年   18篇
  2004年   10篇
  2003年   11篇
  2002年   10篇
  2001年   8篇
  2000年   12篇
  1999年   7篇
  1998年   10篇
  1997年   9篇
  1996年   3篇
  1995年   5篇
  1993年   3篇
  1990年   3篇
  1989年   3篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1982年   3篇
  1980年   5篇
  1978年   6篇
  1977年   6篇
  1976年   4篇
  1974年   4篇
  1973年   3篇
  1970年   3篇
  1969年   4篇
  1968年   4篇
  1958年   2篇
  1957年   3篇
  1956年   4篇
  1955年   2篇
  1953年   2篇
  1951年   3篇
  1948年   5篇
  1928年   2篇
排序方式: 共有409条查询结果,搜索用时 31 毫秒
171.
In this paper a new method for the determination of the position of microwave burst sources on the Sun, its implementation and first observational results, are presented. The 13.7 m antenna at Itapetinga with a five-channel receiver operating at 48 GHz and with a time resolution of 1 ms is used. Five horn antennas clustered around the focus of the Cassegrain reflector provide 5 beams diverging by about 2. This configuration allows the observation of different parts of an active region and the determination of the center of the burst position with an accuracy of 5 to 20 depending on the angular distance relative to the antenna axis. The field of view is 2 by 4. The time resolution of 1 ms is suitable to search for fast structures at 48 GHz. A total bandwidth of 400 MHz is used in order to achieve a sensitivity of 0.04 s.f.u. sufficient for the detection of weak bursts. First observational results of the flare on May 11, 1991 show a well-located source position during all stages.Paper presented at the 4th CESRA workshop in Ouranopolis (Greece) 1991.  相似文献   
172.
Multiple energetic injections in a strong spike-like solar burst   总被引:1,自引:0,他引:1  
An intense and fast spike-like solar burst was observed with high sensitivity in microwaves and hard X-rays, on December 18,1980, at 19h21m20s UT. It is shown that the burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which showed remarkable proportionality between hard X-ray and microwave fluxes. The finer time structures were best defined at mm-microwaves. At the peak of the event the finer structures repeat every 30–60 ms (displaying an equivalent repetition rate of 16–20 s-1). The more slowly varying component with a time scale of about 1 s was identified in microwaves and hard X-rays throughout the burst duration. Similarly to what has been found for mm-microwave burst emission, we suggest that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). We estimate that one such injection produces a pulse of hard X-ray photons with about 4 × 1021 erg, for 25 keV. We use this figure to estimate the relevant parameters of one primary energy release site both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal, and also discuss the relation of this figure to global energy considerations. We find, in particular, that a thick-target interpretation only becomes possible if individual pulses have durations larger than 0.2 s.  相似文献   
173.
174.
Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was $125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and maintains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.  相似文献   
175.
176.
Key aspects of deep-ocean fluid dynamics such as basin-scale (residual) and tidal flow are believed to have changed over glacial/interglacial cycles, with potential relevance for climatic change. To constrain the mechanistic links, magnitudes and temporal succession of events analyses of sedimentary paleo-records are of great importance. Efforts have been underway for some time to reconstruct residual-flow patterns from sedimentary records. Attempts to reconstruct tidal flow characteristics from deep-sea sediment deposits, however, are at a very early stage and first require a better understanding of the reflection of modern tides in sediment dynamics. In this context internal (baroclinic) tides, which are formed by the surface (barotropic) tide interacting with seafloor obstacles, are believed to play a particularly important role. Here we compare two modern deep-sea environments with respect to the effect of tides on sediment dynamics. Both environments are influenced by kilometre-scale topographic features but with vastly different tidal forcing: (1) two sites in the Northeast Atlantic (NEA) being surrounded by, or located downstream of, fields of short seamounts (maximum barotropic tidal current velocities ~5 cm s?1); and (2) a site next to the Anaximenes seamount in the Eastern Mediterranean (EMed) (maximum barotropic tidal current velocities ~0.5 cm s?1). With respect to other key fluid-dynamical parameters both environments are very similar. Signals of sedimentary particle dynamics, as influenced by processes taking place in the bottom boundary layer, were traced by the vertical water-column distribution of radioactive disequilibria (daughter/parent activity ratios≠1) between the naturally occurring, short-lived (half-life: 24.1 d) particulate-matter tracer 234Th relative to its very long-lived and non-particle-reactive parent nuclide 238U. Activity ratios of 234Th/238U<1 in water samples collected near the seafloor indicate fast 234Th scavenging onto particles followed by fast settling of these particles from the sampled parcel of water and, therefore, imply active sediment resuspension and dynamics on time scales of up to several weeks. In the Northeast Atlantic study region tides (in particular internal tides) are very likely to locally push total current velocities near the seafloor across the critical current velocity threshold for sediment erosion or resuspension whereas in the Eastern Mediterranean the tides are much too weak for this to happen. This difference in tidal forcing is reflected in a difference of the frequency of the occurrence of radioactive disequilibria <1 between total 234Th and 238U: In the near-bottom water column of the Northeast Atlantic region 59% of samples had detectable 234Th/238U disequilibria whereas at the Eastern Mediterranean site this fraction was only 7% (including a few disequilibria >1). The results of this study, therefore, add to the evidence suggesting that tides in the deep sea of the open oceans are more important for sediment dynamics than previously thought. It is hypothesised that (a) tide/seamount interactions in the deep open ocean control the local distribution of erosivity proxies (e.g., distributions of sediment grain sizes, heavy minerals and particle-reactive radionuclides) in sedimentary deposits and (b) the aforementioned topographically controlled sedimentary imprints of (internal) tides are useful in the reconstruction of past changes of tidal forcing in the deep sea.  相似文献   
177.
Today, the agricultural sector accounts for approximately 15% of total global anthropogenic emissions, mainly methane and nitrous oxide. Projecting the future development of agricultural non-CO2 greenhouse gas (GHG) emissions is important to assess their impacts on the climate system but poses many problems as future demand of agricultural products is highly uncertain. We developed a global land use model (MAgPIE) that is suited to assess future anthropogenic agricultural non-CO2 GHG emissions from various agricultural activities by combining socio-economic information on population, income, food demand, and production costs with spatially explicit environmental data on potential crop yields. In this article we describe how agricultural non-CO2 GHG emissions are implemented within MAgPIE and compare our simulation results with other studies. Furthermore, we apply the model up to 2055 to assess the impact of future changes in food consumption and diet shifts, but also of technological mitigation options on agricultural non-CO2 GHG emissions. As a result, we found that global agricultural non-CO2 emissions increase significantly until 2055 if food energy consumption and diet preferences remain constant at the level of 1995. Non-CO2 GHG emissions will rise even more if increasing food energy consumption and changing dietary preferences towards higher value foods, like meat and milk, with increasing income are taken into account. In contrast, under a scenario of reduced meat consumption, non-CO2 GHG emissions would decrease even compared to 1995. Technological mitigation options in the agricultural sector have also the capability of decreasing non-CO2 GHG emissions significantly. However, these technological mitigation options are not as effective as changes in food consumption. Highest reduction potentials will be achieved by a combination of both approaches.  相似文献   
178.
In order to study the stability and dynamics of mountain rainforest and paramo ecosystems, including the biodiversity of these ecosystems, the Holocene and late Pleistocene climate and fire variability, and human impact in the southeastern Ecuadorian Andes, we present a high‐resolution pollen record from El Tiro Pass (2810 m elevation), Podocarpus National Park. Palaeoenvironmental changes, investigated by pollen, spores and charcoal analysis, inferred from a 127 cm long core spanning the last ca. 21 000 cal. yr BP, indicate that grass‐paramo was the main vegetation type at the El Tiro Pass during the late Pleistocene period. The grass‐paramo was rich in Poaceae, Plantago rigida and Plantago australis, reflecting cold and moist climatic conditions. During the early Holocene, from 11 200 to 8900 cal. yr BP, subparamo and upper mountain rainforest vegetation expanded slightly, indicating a slow warming of climatic conditions during this period. From 8900 to 3300 cal. yr BP an upper mountain rainforest developed at the study site, indicated by an increase in Hedyosmun, Podocarpaceae, Myrsine and Ilex. This suggests a warmer climate than the present day at this elevation. The modern subparamo vegetation became established since 3300 cal. yr BP at El Tiro Pass. Fires, probably anthropogenic origin, were very rare during the late Pleistocene but became frequent after 8000 cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
179.
The evolution of the spin rate of Comet 9P/Tempel 1 through two perihelion passages (in 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13 year as part of a World-Wide observing campaign and from 2888 observations taken over a period of 50 days from the Deep Impact spacecraft. We determine the following sidereal spin rates (periods): 209.023 ± 0.025°/dy (41.335 ± 0.005 h) prior to the 2000 perihelion passage, 210.448 ± 0.016°/dy (41.055 ± 0.003 h) for the interval between the 2000 and 2005 perihelion passages, 211.856 ± 0.030°/dy (40.783 ± 0.006 h) from Deep Impact photometry just prior to the 2005 perihelion passage, and 211.625 ± 0.012°/dy (40.827 ± 0.002 h) in the interval 2006–2010 following the 2005 perihelion passage. The period decreased by 16.8 ± 0.3 min during the 2000 passage and by 13.7 ± 0.2 min during the 2005 passage suggesting a secular decrease in the net torque. The change in spin rate is asymmetric with respect to perihelion with the maximum net torque being applied on approach to perihelion. The Deep Impact data alone show that the spin rate was increasing at a rate of 0.024 ± 0.003°/dy/dy at JD2453530.60510 (i.e., 25.134 dy before impact), which provides independent confirmation of the change seen in the Earth-based observations.The rotational phase of the nucleus at times before and after each perihelion and at the Deep Impact encounter is estimated based on the Thomas et al. (Thomas et al. [2007]. Icarus 187, 4–15) pole and longitude system. The possibility of a 180° error in the rotational phase is assessed and found to be significant. Analytical and physical modeling of the behavior of the spin rate through of each perihelion is presented and used as a basis to predict the rotational state of the nucleus at the time of the nominal (i.e., prior to February 2010) Stardust-NExT encounter on 2011 February 14 at 20:42.We find that a net torque in the range of 0.3–2.5 × 107 kg m2 s?2 acts on the nucleus during perihelion passage. The spin rate initially slows down on approach to perihelion and then passes through a minimum. It then accelerates rapidly as it passes through perihelion eventually reaching a maximum post-perihelion. It then decreases to a stable value as the nucleus moves away from the Sun. We find that the pole direction is unlikely to precess by more than ~1° per perihelion passage. The trend of the period with time and the fact that the modeled peak torque occurs before perihelion are in agreement with published accounts of trends in water production rate and suggests that widespread H2O out-gassing from the surface is largely responsible for the observed spin-up.  相似文献   
180.
The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP3 currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号