首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55439篇
  免费   12684篇
  国内免费   18954篇
测绘学   9951篇
大气科学   6991篇
地球物理   9737篇
地质学   35968篇
海洋学   10873篇
天文学   1072篇
综合类   4465篇
自然地理   8020篇
  2024年   482篇
  2023年   1190篇
  2022年   3153篇
  2021年   4001篇
  2020年   3155篇
  2019年   3919篇
  2018年   3409篇
  2017年   3193篇
  2016年   3212篇
  2015年   3780篇
  2014年   3827篇
  2013年   4804篇
  2012年   5121篇
  2011年   5098篇
  2010年   5026篇
  2009年   4676篇
  2008年   4826篇
  2007年   4529篇
  2006年   4493篇
  2005年   3610篇
  2004年   2678篇
  2003年   1796篇
  2002年   1995篇
  2001年   1781篇
  2000年   1391篇
  1999年   579篇
  1998年   239篇
  1997年   177篇
  1996年   133篇
  1995年   82篇
  1994年   60篇
  1993年   43篇
  1992年   76篇
  1991年   29篇
  1990年   60篇
  1989年   31篇
  1988年   18篇
  1987年   35篇
  1986年   33篇
  1985年   33篇
  1984年   42篇
  1983年   25篇
  1982年   22篇
  1980年   12篇
  1979年   29篇
  1978年   10篇
  1976年   11篇
  1975年   11篇
  1957年   20篇
  1954年   40篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
81.
The lateral variability of structural elements in the collision zone of the Cretaceous-Paleocene Achaivayam-Valagin island arc with the northeastern Asian margin is considered. The similarity and difference of Eocene collision structural elements in the north and the south of Kamchatka are shown. In northern Kamchatka, the continent-arc boundary is traced along the Lesnaya-Vatyn Thrust Fault, which completed its evolution about 45 Ma ago. The thin, near-horizontal allochthon of this thrust, composed of island-arc rocks, overlies the deformed but unmetamorphosed terrigeneous sequences of the Asian margin. The general structure of this suture in the Kamchatka Isthmus and southern Koryakia is comparable with the uppermost subduction zone, where a thin lithospheric wedge overlaps intensely deformed sediments detached from the plunging plate. In southern Kamchatka (Malka Uplift of the Sredinny Range), the arc-continent collision started 55–53 Ma ago with thrusting of island-arc complexes over terrigenous rocks of continental margin. However, the thickness of the allochthon was much greater than in the north. Immediately after this event, both the autochthon and lower part of allochthon were deformed and subsided to a significant depth. This subsidence gave rise to metamorphism of both the autochthon (Kolpakov and Kamchatka groups, Kheivan Formation) and lower allochthon (Andrianovka and Khimka formations). The anomalously fast heating of the crust was most likely related to the ascent of asthenospheric masses due to slab breakoff, when the Eurasian Plate was plunging beneath the Achaivayam-Valagin arc.  相似文献   
82.
3D models of apparent magnetization and density of rocks allow us to provide insights into the deep structure of the Volga-Ural, Pericaspian, and Fore-Caucasus petroliferous basins. In the Volga-Ural Basin, some Riphean rifts reveal close spatial relations to Paleoproterozoic linear zones, presumably of the rift nature as well. The structure of the Paleoproterozoic Toropets-Serdobsk Belt is interpreted in detail. Rocks with petrophysical properties inherent to basic volcanics are established in the pre-Paleozoic basement of the marginal zone of the Pericaspian Basin. These rocks locally spread beyond the boundary escarpment and may be regarded as a part of the Riphean plume-related basaltic province. It is shown that the Pericaspian Basin was formed on the place of a triple junction of Riphean rifts: the Sarpa and Central Pericaspian oceanic branches and the continental branch of the Pachelma Aulacogen. The drastically different petrophysical properties of the basement beneath Baltica and the Astrakhan Arch indicate that this arch is an element of the large terrane that was attached to Baltica in the Vendian. The suture along which the Astrachan Terrane is conjugated with the basement of the central and southern segments of the Karpinsky Ridge is traced beneath the Paleozoic complex. A system of northwest-verging thrust faults formed during the collision between Scythia and Eurasia is mapped in the basement of the junction zone between the Karpinsky Ridge and Scythian Platform (Terrane). According to geological data, this event took place in the Early Paleozoic.  相似文献   
83.
The Ruiga differentiated mafic-ultramafic intrusion in the northwestern part of the Vetreny Belt paleorift was described for the first time based on geological, petrological, geochronological, and geochemical data. The massif (20 km2 in exposed area) is a typical example of shallow-facies peridotite-gabbro-komatiite-basalt associations and consists of three zones up to 810 m in total thickness (from bottom to top): melanogab-bronorite, peridotite, and gabbro. In spite of pervasive greenschist metamorphism, the rocks contain locally preserved primary minerals: olivine (Fo 75–86), bronzite, augite of variable composition, labradorite, and Cr-spinels. A mineral Sm-Nd isochron on olivine melanogabbronorite from the Ruiga Massif defines an age of 2.39 ± 0.05 Ga, while komatiitic basalts of the Vetreny Belt Formation were dated at 2.40–2.41 Ga (Puchtel et al., 1997). The rocks of the Ruiga intrusion and lava flows of Mt. Golets have similar major, rare-earth, and trace element composition, which suggests their derivation from a single deep-seated source. Their parent magma was presumably a high-Mg komatiitic basalt. In transitional crustal chambers, its composition was modified by olivine-controlled fractionation and crustal contamination, with the most contaminated first portions of the ejected melt. In terms of geology and geochemistry, the considered magmatic rocks of the Vetreny Belt are comparable with the Raglan Ni-PGE komatiite gabbro-peridotite complex in Canada (Naldrett, 2003).  相似文献   
84.
The reasons for the isotopic and geochemical heterogeneity of magmatism of the Neoproterozoic large Volhynia-Brest igneous province (VBP) are considered. The province was formed at 550 Ma in response to the break up of the Rodinia supercontinent and extends along the western margin of the East European craton, being discordant to the Paleoproterozoic mobile zone that separates Sarmatia and Fennoscandia and the Mesoproterozoic Volhynia-Orsha aulacogen. The basalts of VBP show prominent spatiotemporal geochemical zoning. Based on petrographic, mineralogical, geochemical, and isotopic data, the following types of basalts can be distinguished: olivine-normative subalkaline basalts consisting of low-Ti (sLT, < 1.10–2.0 wt % TiO2; εNd(550) from ?6.6 to ?2.7) and medium-Ti (sMT, 2.0–3.0 wt % TiO2, occasionally up to 3.6 wt % TiO2; εNd(550) from ?3.55 to + 0.6) varieties; normal quartz-normative basalts (tholeiites) including low-Ti (tLT, < 1.75–2.0 wt % TiO2) and medium-to-high-Ti (tHT1, 2.0–3.6 wt % TiO2, εNd(550) from ?1.3 to + 1.0) varieties. The hypabyssal bodies are made up of subalkaline low-Ti olivine dolerites (LT, 1.2–1.5 wt % TiO2; εNd(550) = ?5.8) and subalkaline high-Ti olivine gabbrodolerites (HT2, 3.0–4.5 wt % TiO2; εNd(550) = ?2.5). Felsic rocks of VBP are classed as volcanic rocks of normal (andesidacites, dacites, and rhyodacites) and subalkaline (trachyrhyodacites) series with TiO2 0.72–0.77 wt% and εNd(550) of ?12. The central part of VBP is underlain by a Paleoproterozoic domain formed by continent-arc accretion and contains widespread sills of HT2 dolerites and lavas of LT basalts; the northern part of the province is underlain by the juvenile Paleoproterozoic crust dominated by MT and HT1 basalts. MT and LT basalts underwent significant AFC-style upper crustal contamination. During their long residence in the upper crustal magmatic chambers, the basaltic melts fractionated and caused notable heating of the wall rocks and, correspondingly, nonmodal melting of the upper crustal protolith containing high-Rb phase (biotite), thus producing the most felsic rocks of the province. The basalts of VBP were derived from geochemically different sources: probably, the lithosphere and a deep-seated plume (PREMA type). The HT2 dolerites were generated mainly from a lithospheric source: by 3–4% melting of the geochemically enriched garnet lherzolite mantle. LT dolerites were obtained by partial melting of the modally metasomatized mantle containing volatile-bearing phases. The concepts of VBP formation were summarized in the model of three-stage plume-lithosphere interaction.  相似文献   
85.
By definition, a crisis is a situation that requires assistance to be managed. Hence, response to a crisis involves the merging of local and non-local emergency response personnel. In this situation, it is critical that each participant: (1) know the roles and responsibilities of each of the other participants; (2) know the capabilities of each of the participants; and (3) have a common basis for action. For many types of natural disasters, this entails having a common operational picture of the unfolding events, including detailed information on the weather, both current and forecasted, that may impact on either the emergency itself or on response activities. The Consequences Assessment Tool Set (CATS) is a comprehensive package of hazard prediction models and casualty and damage assessment tools that provides a linkage between a modeled or observed effect and the attendant consequences for populations, infrastructure, and resources, and, hence, provides the common operational picture for emergency response. The Operational Multiscale Environment model with Grid Adaptivity (OMEGA) is an atmospheric simulation system that links the latest methods in computational fluid dynamics and high-resolution gridding technologies with numerical weather prediction to provide specific weather analysis and forecast capability that can be merged into the geographic information system framework of CATS. This paper documents the problem of emergency response as an end-to-end system and presents the integrated CATS–OMEGA system as a prototype of such a system that has been used successfully in a number of different situations.  相似文献   
86.
87.
万全寺银金矿床位于张宣幔枝构造东侧的侏罗纪断陷盆地中,成矿时限晚于133.33Ma~101.82 Ma.通过硫、铅、氢、氧、碳及稀有气体同位素研究认为,成矿物质应源自地球深部,在中生代冀西北幔枝构造演化过程中集中成矿.成矿热液以岩浆水为主并加入了部分天水.  相似文献   
88.
This paper explores the links between a strategic policy, urban consolidation, and house prices by examining the changes in the mix of housing and in house price for the period 1991–2004. We contend that urban consolidation could be seen as a source of additional supply, (which might be expected to be felt in lower prices and so contribute to a local policy objective) but also as a stimulus to demand (by developers who could bid up the price of lots where it was understood more housing could be built). Analyses were carried out at the metropolitan and sub-regional scales using correlation tests. The research finds very weak statistical connections, and concludes that this policy has not been associated with price changes.  相似文献   
89.
邹平王家庄铜矿床成矿地球化学及成因探讨   总被引:2,自引:0,他引:2  
王家庄铜矿床的矿化脉石英中流体包裹体均一温度介于116 ~ 566 ℃之间,均值为 289 ℃;盐度介于7.2%~63.2% NaCleq,均值为21.1% NaCleq。流体的气相成分主要为H2O和CO2。在均一温度为240 ~ 440 ℃区间内,出现了富气相的两相水溶液包裹体、富液相的两相水溶液包裹体和含子晶的三相水溶液包裹体共存现象,以及加温后富气相包裹体均一到气相和同期富液相包裹体均一到液相的特征,表明成矿流体曾发生过沸腾作用;其中第一次发生于360 ~ 400 ℃,主要形成高温、高盐度含子晶的三相水溶液包裹体和高温、中盐度富液相的两相水溶液包裹体及高温、低盐度富气相的两相水溶液包裹体;第二次发生于240 ~ 320 ℃,主要形成高—中温、高盐度的含子晶的三相水溶液包裹体和高—中温、中盐度富液相的两相水溶液包裹体及高—中温、低盐度富气相的两相水溶液包裹体;之后主要形成富液相的两相水溶液包裹体,具有中低温和中盐度的特征。矿化脉石英中的δ18OH2O介于-1.14‰ ~ 1.79‰之间,均值为0.94‰;δD介于-63.70‰ ~ -56.50‰之间,均值为-59.8‰;说明王家庄铜矿床的成矿流体主要来源于岩浆,后期混入大气降水。矿石矿物的δ34S变化于-8.80‰ ~ -2.80‰之间,均值为-6.33‰。矿石矿物的n(206Pb)/n(204Pb)介于18.1684 ~ 18.3637之间,均值为18.2892;n(207Pb)/n(204Pb)介于155546 ~ 156342之间,均值为155777;n(208Pb)/n(204Pb)介于38.1286 ~ 38.4840之间,均值为38.2780。说明矿石具有贫重硫和富放射性成因铅的特征,硫、铅主要来源于深部,后期可能受到地壳物质或大气降水的混染。  相似文献   
90.
铁板井绦矿床赋存于辉橄岩体中,辉橄岩体具有全岩矿化的特点,岩体及镍矿体的形成经历了三种不同的成矿过程:首先是岩浆深源液态重力分异作用,而后发生岩浆深源熔离-贯入(成岩、成矿)作用,形成岩体和镍矿体,最后在岩浆期后热液作用的叠加下完成整个成矿过程.该矿床是典型的主要由岩浆熔离作用形成的岩浆矿床.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号