首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50953篇
  免费   744篇
  国内免费   1234篇
测绘学   2075篇
大气科学   3870篇
地球物理   9882篇
地质学   20688篇
海洋学   3400篇
天文学   8186篇
综合类   2215篇
自然地理   2615篇
  2021年   237篇
  2020年   295篇
  2019年   339篇
  2018年   5310篇
  2017年   4558篇
  2016年   3374篇
  2015年   763篇
  2014年   915篇
  2013年   1503篇
  2012年   1901篇
  2011年   3775篇
  2010年   3003篇
  2009年   3583篇
  2008年   3025篇
  2007年   3477篇
  2006年   1237篇
  2005年   1075篇
  2004年   1281篇
  2003年   1203篇
  2002年   1005篇
  2001年   705篇
  2000年   718篇
  1999年   594篇
  1998年   613篇
  1997年   550篇
  1996年   411篇
  1995年   412篇
  1994年   429篇
  1993年   326篇
  1992年   326篇
  1991年   270篇
  1990年   330篇
  1989年   282篇
  1988年   263篇
  1987年   284篇
  1986年   242篇
  1985年   328篇
  1984年   343篇
  1983年   344篇
  1982年   325篇
  1981年   280篇
  1980年   296篇
  1979年   221篇
  1978年   215篇
  1977年   219篇
  1976年   189篇
  1975年   199篇
  1974年   180篇
  1973年   169篇
  1972年   123篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
981.
982.
Trace element concentrations of altered basaltic glass shards (layer silicates) and zeolites in volcaniclastic sediments drilled in the volcanic apron northeast of Gran Canaria during Ocean Drilling Program (ODP) leg 157 document variable element mobilities during low-temperature alteration processes in a marine environment. Clay minerals (saponite, montmorillonite, smectite) replacing volcanic glass particles are enriched in transition metals and rare earth elements (REE). The degree of retention of REE within the alteration products of the basaltic glass is correlated with the field strength of the cations. The high field-strength elements are preferentially retained or enriched in the alteration products by sorption through clay minerals. Most trace elements are enriched in a boundary layer close to the interface mineral-altered glass. This boundary layer has a key function for the physico-chemical conditions of the subsequent alteration process by providing a large reactive surface and by lowering the fluid permeability. The release of most elements is buffered by incorporation into secondary precipitates (sodium-rich zeolites, phillipsite, Fe- and Mn-oxides) as shown by calculated distribution coefficients between altered glasses and authigenic minerals. Chemical fluxes change from an open to a closed system behavior during prograde low-temperature alteration of volcaniclastic sediments with no significant trace metal flux from the sediment to the water column.  相似文献   
983.
984.
The largest reservoir of crustal iodine is found in marine sediments, where it is closely associated with organic material. This presence, together with the existence of a long-lived, cosmogenic radioisotope 129I (t1/2 = 15.7 Ma), make this isotopic system well suited for the study of sediment recycling in subduction zones. Reported here are the results of 129I/I ratios in volcanic fluids, collected during a comprehensive study of fluids and gases in the Central American Volcanic Arc. 129I/I ratios, together with I, Br, and Cl concentrations, were determined in 79 samples from four geothermal centers and a number of crater lakes, fumaroles, hot springs, and surface waters in Costa Rica, Nicaragua, and El Salvador. Geothermal and volcanic fluids were found to have iodine concentrations substantially higher than values in seawater or meteoric waters. 129I/I ratios in most of the geothermal fluids are below the preanthropogenic input ratio of 1500 × 10−15, demonstrating that recent anthropogenic additions are largely absent from the volcanic systems. The majority of the 129I/I ratios are between 500 and 800 × 10−15. These ratios indicate minimum iodine ages between 25 and 15 Ma, in good agreement with the age of subducted sediments in this region. In all four geothermal systems, however, a few samples were found with iodine ages older than 40 Ma—that is, considerably below the expected age range for subducted sediments from the Cocos Plate. These samples probably reflect the presence of iodine derived from sediments in older accreted oceanic terraines. The iodine ages indicate that the magmatic end member for the volcanic fluids originates in the deeper parts of the subducted sediment column, with small additions from older iodine mobilized from the overlying crust. The high concentrations of iodine in geothermal fluids, combined with the observed iodine ages, demonstrate that remobilization in the main volcanic zone (and probably also in the forearc area) is an important part in the overall marine cycle of iodine and similar elements.  相似文献   
985.
One-hundred fluid inclusions in Silurian marine halite were analyzed in order to determine the major-ion composition of Silurian seawater. The samples analyzed were from three formations in the Late Silurian Michigan Basin, the A-1, A-2, and B Evaporites of the Salina Group, and one formation in the Early Silurian Canning Basin (Australia), the Mallowa Salt of the Carribuddy Group. The results indicate that the major-ion composition of Silurian seawater was not the same as present-day seawater. The Silurian ocean had lower concentrations of Mg2+, Na+, and SO42−, and much higher concentrations of Ca2+ relative to the ocean’s present-day composition. Furthermore, Silurian seawater had Ca2+ in excess of SO42−. Evaporation of Silurian seawater of the composition determined in this study produces KCl-type potash minerals that lack the MgSO4-type late stage salts formed during the evaporation of present-day seawater. The relatively low Na+ concentrations in Silurian seawater support the hypothesis that oscillations in the major-ion composition of the oceans are primarily controlled by changes in the flux of mid-ocean ridge brine and riverine inputs and not global or basin-scale, seawater-driven dolomitization. The Mg2+/Ca2+ ratio of Silurian seawater was ∼1.4, and the K+/Ca2+ ratio was ∼0.3, both of which differ from the present-day counterparts of 5 and 1, respectively. Seawaters with Mg2+/Ca2+ <2 facilitate the precipitation of low-magnesian calcite (mol % Mg < 4) marine ooids and submarine carbonate cements whereas seawaters with Mg2+/Ca2+ >2 (e.g., modern seawater) facilitate the precipitation of aragonite and high-magnesian calcite. Therefore, the early Paleozoic calcite seas were likely due to the low Mg2+/Ca2+ ratio of seawater, not the pCO2 of the Silurian atmosphere.  相似文献   
986.
The relationships between electrical conductivity, temperature, salinity, and density are studied for brackish Lake Issyk-Kul. These studies are based on a newly determined major ion composition, which for the open lake shows a mean absolute salinity of 6.06 g kg−1. The conductivity-temperature relationship of the lake water was determined experimentally showing that the lake water is about 1.25 times less conductive than seawater diluted to the same absolute salinity as that of the lake water. Based on these results, an algorithm is presented to calculate salinity from in-situ conductivity measurements. Applied to the field data, this shows small but important vertical salinity variations in the lake with a salinity maximum at 200 m and a freshening of the surface water with increasing proximity to the shores. The algorithm we adopt to calculate density agrees well with earlier measurements and shows that at 20°C and 1 atm Lake Issyk-Kul water is about 530 g m−3 denser than seawater at the same salinity. The temperature of maximum density at 1 atm is about 0.15°C lower than that for seawater diluted to the same salinity. Despite its small variations, salinity plays an important role, together with temperature changes, in the static stability and in the production of deep-water in this lake. Changes in salinity may have had important consequences on the mixing regime and the fate of inflowing river water over geological time. Uncharged silicic acid is negligible for the stability of the water column except near an ∼15 m thick nepheloid layer observed at the bottom of the deep basin.  相似文献   
987.
988.
The Skidaway River estuary is a tidally-dominated subtropical estuary in the southeastern USA surrounded by extensiveSpartina salt marshes. Weekly smapling at high and low tide began in 1986 for hydrography, nutrients, chlorophylla, particulate matter, and microbial and plankton biomass and composition; hydrographic and nutrient data during 1986–1996 are reported here. Salinity varied inversely with river discharge and exhibited variability at all time scales but with no long-term trend. Water temperature typically ranged over 25°C and was without apparent long-term frend. Seasonal cycles in concentrations of NO3, NH4, PO4, Si(OH)4, and DON were observed, with annual maxima generally occurring in late summer. Superimposed on seasonal cycles, all five nutrients exhibited steady increases in minimum, mean, and maximum concentrations; mean concentrations increased c. 50–150% during the decade. Nutrient concentrations were highly correlated with water temperature over the ten-year period, but weakly related to salinity and discharge. Nutrients were strongly correlated with one another, and the relative ratios among inorganic nutrients showed little long-term trend. Correlations among temperature and nutrient concentrations exhibited considerable inter-annual variability. Major spikes in organic and inorganic nutrient concentrations coincided with significant rainfall events; concentrations increased hyperbolically with rainfall. Although pristine compared to more heavily impacted waterways primarily outside the region, residential development and population density have been increasing rapidly during the past 15–20 years. Land use is apparently altering nutrient loading over the long-term (months-years), and superimposed on this are stochastic meteorological events that accelerate these changes over the short term (days-weeks).  相似文献   
989.
The aquatic macrofauna of the Guadalquivir estuary were sampled (1 mm mesh persiana net) at 5 sampling sites located along the entire (except the tidal freshwater region) estuarine gradient of salinity (outer 50 km). A total of 134 fish and macroinvertebrate species was collected but only 62 were considered common or regularly present in the estuary. Univariate measures of the community structure showed statistically significant differences among sampling sites: species richness, abundance, and biomass decreased in the upstream direction, being positively correlated with the salinity. Temporal differences of these three variables were also statistically significant. While a clear seasonal pattern (minimum densities in winter and maximum in spring-summer) was observed for abundance and biomass, no such pattern existed for the number of species. Mysids was the most dominant group throughout the estuary (96% to 99% of abundance; 49% to 85% of biomass), although fish biomass was also important at the outer estuary (36% to 38%). Multivariate analyses indicated highly significant spatial variation in the macrofaunal communities observed along the salinity gradient. These analyses suggest that the underlying structure was a continuum with more or less overlapping distributions of the species dependent on their ability to tolerate different physicochemical conditions. There were also significant temporal (intermonthly + interannual) variation of the estuarine community; the relative multivariate dispersion indicated that monthly variation was more considerable (relative multivariate dispersion >1) at the outer part of the estuary during the wet year (last 20 km) and was higher in the inner stations during the dry year (32 to 50 km from the river mouth). Since a clear negative exponential relationship was observed between the freshwater input (from a dam located 110 km upstream) and water salinity at all sampling stations, it is concluded that the human freshwater management is probably affecting the studied estuarine communities. While the higher seasonal (long-term) stability of the salinity gradient, due to the human control of the freshwater input, may facilitate the recruitment of marine species juveniles during the meteorologically unstable early-spring, the additional (short-term) salinity fluctuations during the warm period may negatively affect species that complete their lifecycle within the estuary.  相似文献   
990.
A three-dimensional (3D) density model, approximated by two regional layers—the sedimentary cover and the crystalline crust (offshore, a sea-water layer was added), has been constructed in 1° averaging for the whole European continent. The crustal model is based on simplified velocity model represented by structure maps for main seismic horizons—the “seismic” basement and the Moho boundary. Laterally varying average density is assumed inside the model layers. Residual gravity anomalies, obtained by subtraction of the crustal gravity effect from the observed field, characterize the density heterogeneities in the upper mantle. Mantle anomalies are shown to correlate with the upper mantle velocity inhomogeneities revealed from seismic tomography data and geothermal data. Considering the type of mantle anomaly, specific features of the evolution and type of isostatic compensation, the sedimentary basins in Europe may be related into some groups: deep sedimentary basins located in the East European Platform and its northern and eastern margins (Peri-Caspian, Dnieper–Donets, Barents Sea Basins, Fore–Ural Trough) with no significant mantle anomalies; basins located on the activated thin crust of Variscan Western Europe and Mediterranean area with negative mantle anomalies of −150 to −200×10−5 ms−2 amplitude and the basins associated with suture zones at the western and southern margins of the East European Platform (Polish Trough, South Caspian Basin) characterized by positive mantle anomalies of 50–150×10−5 ms−2 magnitude. An analysis of the main features of the lithosphere structure of the basins in Europe and type of the compensation has been carried out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号