首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
  国内免费   2篇
测绘学   4篇
地球物理   3篇
地质学   33篇
海洋学   1篇
天文学   22篇
自然地理   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   6篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  1998年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有64条查询结果,搜索用时 234 毫秒
21.
Vertical profiles of137Cs and210Pb have been determined in a 9 m column of ice from accumulation zone of Changme-Khangpu glacier in north Sikkim valley.137Cs activity varies from 4 to 22 dpm/ L. In many samples210Pb occurs at a level of 20 to 65 dpm/ L which is much higher than the expected fallout value.137Cs and210Pb activities correlate well with each other but not with the dust content. Possibility of210Pb production in the nuclear explosions is discussed. Several peaks appear in the depth profile of137Cs and210Pb which can be matched with Chinese atmospheric nuclear explosions with some phase difference if a uniform ice accumulation rate of 0.7 m per year is assumed since 1969.  相似文献   
22.
Chandrayaan-1: Science goals   总被引:1,自引:0,他引:1  
The primary objectives of the Chandrayaan-1 mission are simultaneous chemical, mineralogical and topographic mapping of the lunar surface at high spatial resolution. These data should enable us to understand compositional variation of major elements, which in turn, should lead to a better understanding of the stratigraphic relationships between various litho units occurring on the lunar surface. The major element distribution will be determined using an X-ray fluorescence spectrometer (LEX), sensitive in the energy range of 1–10 keV where Mg, Al, Si, Ca and Fe give their Kα lines. A solar X-ray monitor (SXM) to measure the energy spectrum of solar X-rays, which are responsible for the fluorescent X-rays, is included. Radioactive elements like Th will be measured by its 238.6 keV line using a low energy gamma-ray spectrometer (HEX) operating in the 20–250 keV region. The mineral composition will be determined by a hyper-spectral imaging spectrometer (HySI) sensitive in the 400–920 nm range. The wavelength range is further extended to 2600 nm where some spectral features of the abundant lunar minerals and water occur, by using a near-infrared spectrometer (SIR-2), similar to that used on the Smart-1 mission, in collaboration with ESA. A terrain mapping camera (TMC) in the panchromatic band will provide a three-dimensional map of the lunar surface with a spatial resolution of about 5 m. Aided by a laser altimeter (LLRI) to determine the altitude of the lunar craft, to correct for spatial coverage by various instruments, TMC should enable us to prepare an elevation map with an accuracy of about 10 m. Four additional instruments under international collaboration are being considered. These are: a Miniature Imaging Radar Instrument (mini-SAR), Sub Atomic Reflecting Analyser (SARA), the Moon Mineral Mapper (M3) and a Radiation Monitor (RADOM). Apart from these scientific payloads, certain technology experiments have been proposed, which may include an impactor which will be released to land on the Moon during the mission. Salient features of the mission are described here. The ensemble of instruments onboard Chandrayaan-1 should enable us to accomplish the science goals defined for this mission.  相似文献   
23.
Results of rocket observations of SCO X-1 over the spectral range of 220 keV are presented. The observations have been performed partly in India and partly in Japan under the collaboration of the three groups. The present results are compared with results of similar observations carried out by the LRL (Lawrence Radiation Laboratory) group. Some of these X-ray observations were accompanied by simultaneous optical observations. Relationships between the hardness of the X-ray spectrum and the X-ray intensity and between the hardness and the optical luminosity are compiled. The relationships among the parameters (temperature, density and size) which characterize the postulated isothermal cloud model of SCO X-1 are given. They indicate that SCO X-1 is characterized by a temperature of about 107–108K, a density of about 1016–1017 cm–3 and a radius of about 108–109 cm respectively. We further show that the temperature is inversely correlated with the size of the source; an increase in temperature corresponds to a decrease in the radius and an increase in density.  相似文献   
24.
Abstract— A stony meteorite fell at Itawa Bhopji, Rajasthan, India on 2000 May 30. This is the fifth recorded fall in a small area of Rajasthan during the past decade. The meteorite is an ordinary chondrite with light clasts in a dark matrix, consisting of a mixture of equilibrated (mainly type 5) and unequilibrated components. Olivine is Fa24–26 and pyroxene Fs20–22 but, within the unequilibrated components, olivine (Fa5–29) and low calcium pyroxene (Fs5–37) are highly variable. Based on petrographic studies and chemical analyses, it is classified as L(3–5) regolith breccia. Studies of various cosmogenic records, including several gamma‐emitting radionuclides varying in half‐life from 5.6 day 52Mn to 0.73 Ma 26Al, tracks and rare gases have been carried out. The exposure age of the meteorite is estimated from cosmogenic components of rare gases to be 19.6 Ma. The track density varies by a factor of ?3 (from 4 to 12 times 106/cm2) within the meteorite, indicating a preatmospheric body of ?9 cm radius (corresponding to a meteoroid mass of ?11 kg) and small ablation (1.5 to 3.6 cm). Trapped components in various rare gases are high and the solar component is present in the dark portion of the meteorite. Large excess of neutron‐produced 82Kr and 128Xe in both the light and the dark lithology but very low 60Co, indicating low neutron fluxes received by the meteoroid in the interplanetary space, are clear signatures of an additional irradiation on the parent body.  相似文献   
25.
This paper describes the strong fluctuations in the intensity of radio source PKS 2025-15, observed at 327 MHz, during its occultation by comet Kohoutek (1973f) in 1974, January 5. Possible mechanisms which could produce the observed fluctuations are examined. It is difficult to explain the fluctuations in terms of scintillation produced due to the passage of radio waves through the irregular cometary plasma.No detectable radio emission was observed from the comet at 327 MHz.  相似文献   
26.
Observations of the trail caused by the meteorite which fell around Dhajala, Gujarat (India), on 28 January 1976 have been used to compute the probable orbit of the meteoroid in space. The cosmic ray effects in the meteorite fragments indicate high mass ablation (?90%), suggesting a high velocity (?20 km/sec) of entry into the Earth's atmosphere. The atmospheric trajectory is reasonably well documented and its deviation from the projected ground fallout can be understood in terms of the ambient wind pattern. The apparent radiant of the trail was at a point in the sky with right ascension 165°, declination +60°. Considering the errors in estimating the radiant, we get a range of orbits with a = 2.3 ± 0.8 AU, e = 0.6 ± 0.1, and i = 28 ± 4° with the constraints of a ? 1.5 AU and V < 25 km/sec (which causes nearly complete evaporation of the meteoroid). Taking V = 21.5 lm/sec as indicated by the measured mass ablation of the meteorite, the orbital elements are deduced to be a = 1.8 AU, e = 0.59, i = 27°.6, ω = 109°.1, Ω = 307°.8, and q = 0.74.  相似文献   
27.
The Chandrayaan-1 X-ray Spectrometer (C1XS) flown on-board the first Indian lunar mission Chandrayaan-1, measured X-ray fluorescence spectra during several episodes of solar flares during its operational period of ∼9 months. The accompanying X-ray Solar Monitor (XSM) provided simultaneous spectra of solar X-rays incident on the Moon which are essential to derive elemental chemistry. In this paper, we present the surface abundances of Mg, Al, Si, Ca and Fe, derived from C1XS data for a highland region on the southern nearside of the Moon. Analysis techniques are described in detail including absolute X-ray line flux derivation and conversion into elemental abundance. The results are consistent with a composition rich in plagioclase with a slight mafic mineral enhancement and a Ca/Al ratio that is significantly lower than measured in lunar returned samples. We suggest various possible scenarios to explain the deviations.  相似文献   
28.
We present X-ray fluorescence observations of the lunar surface, made by the Chandrayaan-1 X-ray Spectrometer during two solar flare events early in the mission (12th December 2008 and 10th January 2009). Modelling of the X-ray spectra with an abundance algorithm allows quantitative estimates of the MgO/SiO2 and Al2O3/SiO2 ratios to be made for the two regions, which are in mainly basaltic areas of the lunar nearside. One of these ground tracks includes the Apollo 14 landing site on the Fra Mauro Formation. Within the 1σ errors provided, the results are inside the range of basaltic samples from the Apollo and Luna collections. The Apollo 14 soil composition is in agreement with the results from the January flare at the 1σ uncertainty level. Discrepancies are observed between our results and compositions derived for the same areas by the Lunar Prospector gamma-ray spectrometer; some possible reasons for this are discussed.  相似文献   
29.
We report here for the first time the presence of the natural, toluene-soluble C60 and the toluene-insoluble high-pressure and temperature phase of fullerene C60 in the carbonaceous matter extracted from the iridium-rich layers of the intertrappean sediments of Anjar, India. The toluene-insoluble form of fullerene is formed at high-temperature and pressure (HPT) and is distinguished from normal fullerene by UV-visible and Fourier-transform infrared (FT-IR) spectroscopic techniques. The C60 fullerene has been identified by high-resolution electron-impact ionization mass spectrometric analysis, as well as by Fourier-transform infrared (FT-IR), UV-visible, and 13C-nuclear magnetic resonance (NMR) spectroscopy. In iridium-poor horizons of this section, fullerenes are absent, but complex hydrocarbons are sometimes present. The FT-IR spectroscopic studies on the insoluble fullerenes show strong absorption peaks at about 740 and 509 cm−1 and a number of weak peaks at 1380, 1300, 1205, 1120, 1000, 608, 554, and 441 cm−1, which are characteristic of a high-pressure and temperature C60 fullerene. The UV-visible spectra of the toluene-soluble fullerene, as well as the insoluble fullerene, show strong absorption bands at 270 and 348 nm, which are characteristic of pristine fullerene C60. The toluene-insoluble carbon-rich residue shows additional absorption bands at 710, 640, and 395 nm. These UV-visible bands independently confirm the presence of the high-pressure-temperature (HPT) phase of fullerene C60. Conditions of high-pressure and temperature required for formation of the HPT fullerene phase can be created by an energetic impact event. Therefore, the presence of HPT fullerene in the KT boundary layer at Anjar is linked to the impact event at the KT transition.  相似文献   
30.
While constraining Cenozoic evolution of the Himalaya through enlightening fossils we find that Dharmsala Group (intervening Subathu Group and Siwalik Group) in Kangra Valley and adjoining coevals yield sporadic fossils. Hence, this first record of fossil rodents from Dharmsala Group is an important addition to an earlier report of dinothere from these horizons. The rodent material from grey facies of the Dharmsala Group comprises of an isolated premolar and fragments of a tooth and an incisor. Available crown details in conjunction with distinctive dimensions of the premolar lead to its assignment to Hodsahibia, a baluchimyine taxon; this taxon of Eocene lineage of south Asian-African distribution is already on record from early Oligocene horizons in Bugti area, Pakistan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号