The sloshing waves in a three dimensional (3D) tank are analysed using a finite element method based on the fully non-linear wave potential theory. When the tank is undergoing two dimensional (2D) motion, the calculated results are found to be in very good agreement with other published data. Extensive calculation has been made for the tank in 3D motion. As in 2D motion, in addition to normal standing waves, travelling waves and bores are also observed. It is found that high pressures occur in various circumstances, which could have important implications for many engineering designs. 相似文献
Hydroelastic effect of sloshing is studied through an experimental investigation. Different excitation frequencies are considered with low-fill-depth and large amplitude. Morlet wavelet transform is introduced to analyze the free surface elevations and sloshing pressures. It focuses on variations and distributions of the wavelet energy in elastic tanks. The evolutions of theoretical and experimental wavelet spectra are discussed and the corresponding Fourier spectrums are compared. Afterwards, average values of the wavelet spectra are extracted to do a quantitative study at various points. From the wavelet analysis, sloshing energies are mainly distributed around the external excitation frequency and expanded to high frequencies under violent condition. In resonance, experimental wavelet energy of the elevation in elastic tanks is obviously less than that in the rigid one; for sloshing pressures, the elastic wavelet energy close to the rigid one and conspicuous impulse is observed. It recommends engineers to concern the primary natural frequency and impulsive peak pressures. 相似文献
A method for the determination of nanomolar concentrations of orthophosphate in oligotrophic seawater developed by Liang et al. (2007) has been modified to make it fully feasible for shipboard application and for faster sample throughput with minimized
sample volume. The technique is based on the flow injection method with solid phase extraction on a Sep-Pak C18 cartridge
and colorimetric detector. The Schlieren effect was minimized by rinsing the cartridge sequentially with 5 mL water and 2
mL 95% ethanol solution. With three micro pumps in parallel, savings of up to 80% in amount of reagents and 25% volume of
seawater samples could be achieved in comparison to the previous method. Variation of stopped flow time and sample loading
time gave 3 different standard curves, which corresponded to 3 linear ranges within 3.4 and 515 nM. The modified method permits
the analysis of samples over a wide range of concentrations, and has been successfully applied to shipboard determination
of trace orthophosphate in more than 200 seawater samples during a one-month cruise in the South China Sea. For seawater at
concentrations of 20.6, 82.5, 206.2 nM orthophosphate, the relative standard deviations (RSD) (n = 6), determined daily for 6 days on board ship were 4.45%, 4.73% and 6.75%, respectively. Five seawater samples collected
in the Station SEATS (South East Asia Time Series Station at 18°N, 116°E) were analyzed using the present method both on board
and in a land-based laboratory, as well as with the magnesium hydroxide-induced coprecipitation (MAGIC) method, and showed
no significant difference according to the statistical t-test. 相似文献
The impact load (equivalent impact height) applied to deep-sea sediment by a walking mining machine was first deduced by the energy conservation principle, and the simulative soil was prepared based on the deep-sea sediment collected from the Pacific C-C mining area. The self-designed impact compressive creep tests of the simulative soil were conducted under different ground stresses and impact heights, in order to determine impact compressive creep parameters using a K-H rheological model. Test results show that the impact compressive creep curves have three similar creep stages (transient creep, unstable creep, and stable creep) to static compressive creep curves, where the transient creep deformation and total deformation at the unstable creep stage decrease with the impact load. Among the three impact compressive creep parameters (K1, K2, β) of the simulative soil, K1 is first increased with impact height and finally fluctuated to a certain stable value, while K2 and β are approximately linearly increased with impact height. The maximum subsidence of the mining machine under a specific designed ground stress and walking velocity predicted by the impact compressive creep constitutive equation can be used for safety assessment of the mining machine. 相似文献
The modern fishery stock assessment could be conducted by various models, such as Stock Synthesis model with high data requirement and complicated model structure, and the basic surplus production model, which fails to incorporate individual growth, maturity, and fishery selectivity, etc. In this study, the Just Another Bayesian Biomass Assessment (JABBA) Select which is relatively balanced between complex and simple models, was used to conduct stock assessment for yellowfin tuna (Thunnus albacares) in the Atlantic Ocean. Its population dynamics was evaluated, considering the influence of selectivity patterns and different catch per unit effort (CPUE) indices on the stock assessment results. The model with three joint longline standardized CPUE indices and logistic selectivity pattern performed well, without significant retrospective pattern. The results indicated that the stock is not overfished and not subject to overfishing in 2018. Sensitivity analyses indicated that stock assessment results are robust to natural mortality but sensitive to steepness of the stock-recruitment relationship and fishing selectivity. High steepness was revealed to be more appropriate for this stock, while the fishing selectivity has greater influence to the assessment results than life history parameters. Overall, JABBA-Select is suitable for the stock assessment of Atlantic yellowfin tuna with different selectivity patterns, and the assumptions of natural mortality and selectivity pattern should be improved to reduce uncertainties. 相似文献
During the self-weight penetration process of the suction foundation on the dense sand seabed, due to the shallow penetration depth, the excess seepage seawater from the outside to the inside of the foundation may cause the negative pressure penetration process failure. Increasing the self-weight penetration depth has become an important problem for the safe construction of the suction foundation. The new suction anchor foundation has been proposed, and the self-weight penetration characteristics of the traditional suction foundation and the new suction anchor foundation are studied and compared through laboratory experiments and analysis. For the above two foundation types, by considering five foundation diameters and two bottom shapes, 20 models are tested with the same penetration energy. The effects of different foundation diameters on the penetration depth, the soil plug characteristics, and the surrounding sand layer are studied. The results show that the penetration depth of the new suction foundation is smaller than that of the traditional suction foundation. With the same penetration energy, the penetration depth of the suction foundation becomes shallower as the diameter increases. The smaller the diameter of the suction foundation, the more likely it is to be fully plugged, and the smaller the height of the soil plug will be. In the stage of self-weight penetration, the impact cavity appears around the foundation, which may affect the stability of the suction foundation.