首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
大气科学   9篇
地球物理   2篇
地质学   22篇
海洋学   1篇
天文学   9篇
自然地理   3篇
  2021年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2007年   1篇
  2005年   2篇
  2004年   4篇
  2003年   6篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1984年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有46条查询结果,搜索用时 62 毫秒
31.
Twenty paleogeographic maps are presented for Middle Eocene (Lutetian) to Late Pliocene times according to the stratigraphical data given in the companion paper by Berger et al. this volume. Following a first lacustrine-continental sedimentation during the Middle Eocene, two and locally three Rupelian transgressive events were identified with the first corresponding with the Early Rupelian Middle Pechelbronn beds and the second and third with the Late Rupelian Serie Grise (Fischschiefer and equivalents). During the Early Rupelian (Middle Pechelbronn beds), a connection between North Sea and URG is clearly demonstrated, but a general connection between North Sea, URG and Paratethys, via the Alpine sea, is proposed, but not proved, during the late Rupelian. Whereas in the southern URG, a major hiatus spans Early Aquitanian to Pliocene times, Early and Middle Miocene marine, brackish and freshwater facies occur in the northern URG and in the Molasse Basin (OMM, OSM); however, no marine connections between these basins could be demonstrated during this time. After the deposition of the molasse series, a very complex drainage pattern developed during the Late Miocene and Pliocene, with a clear connection to the Bresse Graben during the Piacenzian (Sundgau gravels). During the Late Miocene, Pliocene and Quaternary sedimentation persisted in the northern URG with hardly any interruptions. The present drainage pattern of the Rhine river (from Alpine area to the lower Rhine Embayment) was not established before the Early Pleistocene.  相似文献   
32.
Summary The prediction of Indian Summer Monsoon Rainfall (ISMR) is vital for Indian economic policy and a challenge for meteorologists. It needs various predictors among which El Niño-Southern Oscillation (ENSO) is the most important. It has been established by various researchers that ENSO and ISMR relationship is weakening in recent years. It has been also argued that changes in ENSO-ISMR relationship may be due to decadal fluctuations, or it may be the indicative of longer-term trends related to anthropogenic-induced climate changes.In the present communication, an attempt is made to discuss the variability and predictability of ISMR in recent years. It is found that three different indices associated with different regions in the tropics and extra-tropics at different levels of the atmosphere-Asian land mass index represented by geopotential height at upper troposphere (A1), Caribbean-North Atlantic index represented by geopotential height at middle troposphere (A2) and tropical Pacific index at surface level (A3) – have different mechanisms to interact mutually and separately with ISMR in different periods. In recent years ISMR shows weak association with A1 and A3 while strong association with A2. Thus, if these three indices could be combined objectively, they can give rise to the predictability of ISMR. This objective combination is achieved here using Artificial Neural Network (ANN) and a model is developed to predict ISMR. This model has predicted reasonably well during the whole period of consideration (1958–2000) with a correlation coefficient of 0.92 in last 11 years (1990–2000) whereas most of the models fail to predict the variability in recent time.Current affiliation: Department of Physics, Federal University of Parana, Curitiba, Brazil.Received June 2002; revised October 1, 2002; accepted November 12, 2002 Published online: April 10, 2003  相似文献   
33.
Late-glacial (17–11 cal ka BP) pollen records from midwestern North America show similar vegetation trends; however, poor dating resolution, wide-interval pollen counts, and variable sedimentation rates have prevented the direct correlation with the North Atlantic Event Stratigraphy as represented in the Greenland ice-core records, thus preventing the understanding of the teleconnections and mechanisms of late-Quaternary events in the Northern Hemisphere. The widespread occurrence of late-glacial vegetation and climates with no modern analogs also hinders late-glacial climate reconstructions. A high-resolution pollen record with a well-controlled age model from Crystal Lake in northeastern Illinois reveals vegetation and climate conditions during the late-glacial and early Holocene intervals. Late-glacial Crystal Lake pollen assemblages, dominated by Picea mariana and Fraxinus nigra with lesser amounts of Abies and Larix, suggest relatively wet climate despite fluctuations between colder and warmer temperatures. Vegetation changes at Crystal Lake are coeval with millennial-scale trends in the NGRIP ice-core record, but major shifts in vegetation at Crystal Lake lag the NGRIP record by 300–400 yr. This lag may be due to the proximity of the Laurentide ice sheet, the ice sheet's inherent slowness in response to rapid climate changes, and its effect on frontal boundary conditions and lake-effect temperatures.  相似文献   
34.
Although the carbon-reservoir problem with bulk-sediment radiocarbon dates from lakes has long been recognized, many synoptic studies continue to use chronologies derived from such dates. For four sites in central North America, we evaluate chronologies based on conventional radiocarbon dates from bulk sediment versus chronologies based on accelerator mass spectrometry (AMS) radiocarbon dates from terrestrial plant macrofossils. The carbon-reservoir error varies among sites and temporally at individual sites from 0 to 8000 yr. An error of 500–2000 yr is common. This error has important implications for the resolution of precise event chronologies.  相似文献   
35.
Interannual variability is an important modulator of synoptic and intraseasonal variability in South America. This paper seeks to characterize the main modes of interannual variability of seasonal precipitation and some associated mechanisms. The impact of this variability on the frequency of extreme rainfall events and the possible effect of anthropogenic climate change on this variability are reviewed. The interannual oscillations of the annual total precipitation are mainly due to the variability in austral autumn and summer. While autumn is the dominant rainy season in the northern part of the continent, where the variability is highest (especially in the northeastern part), summer is the rainy season over most of the continent, thanks to a summer monsoon regime. In the monsoon season, the strongest variability occurs near the South Atlantic Convergence Zone (SACZ), which is one of the most important features of the South American monsoon system. In all seasons but summer, the most important source of variability is ENSO (El Ni?o Southern Oscillation), although ENSO shows a great contribution also in summer. The ENSO impact on the frequency of extreme precipitation events is also important in all seasons, being generally even more significant than the influence on seasonal rainfall totals. Climate change associated with increasing emission of greenhouse gases shows potential to impact seasonal amounts of precipitation in South America, but there is still great uncertainty associated with the projected changes, since there is not much agreement among the models’ outputs for most regions in the continent, with the exception of southeastern South America and southern Andes. Climate change can also impact the natural variability modes of seasonal precipitation associated with ENSO.  相似文献   
36.
37.
38.
Mapping past vegetation dynamics from heterogeneous databases of fossil-pollen records must face the challenge of temporal uncertainty. The growing collection of densely sampled fossil-pollen records with accurate and precise chronologies allows us to develop new methods to assess and reduce this uncertainty. Here, we test our methods in the context of vegetation changes in eastern North America during the abrupt climate changes of the last deglaciation. We use the network of fossil-pollen records in the Neotoma Paleoecology Database (www.neotomadb.org) and data contributed by individual investigators. Because many of these records were collected decades before the current generation of 14C and age-model technologies, we first developed a framework to assess the overall reliability of 14C chronologies by systematically evaluating individual 14C ages and associated chronologies. We developed a qualitative ranking scheme for individual 14C ages that combines information about their accuracy and precision. ‘Benchmark’ pollen records were defined to have at least one 14C age with an accuracy within 250 years and a precision less than 500 years that is within 1000 years of the time interval of interest, and at least five pollen samples per 1000 years across this time period. Only 22 of >350 late-Pleistocene pollen cores in eastern North America met the benchmark criteria.We then used Bayesian change-point analysis to identify widespread ecological events (Picea decline, Quercus rise, and Alnus decline), and interpolated the ages of these events from the benchmark sites to non-benchmark sites. Leave-one-out cross-validation analyses with the benchmark sites indicated that the spatial error associated with interpolation was less for inverse distance-weighting (IDW) than thin-plate splines (TPS) and was about 500 years for the three biotic events. By comparison, the difference between the original ages of events at poorly constrained sites and the biostratigraphic ages interpolated from the benchmark sites was close to 1000 years, suggesting that the use of biostratigraphic ages can significantly improve the age models for poorly constrained sites. Overall, these analyses suggest that the temporal resolution of multi-site syntheses of late-Pleistocene fossil-pollen data in eastern North America is about 500 years, a resolution that allows analysis of ecological responses to millennial-scale climate change during the last deglaciation.  相似文献   
39.
Rosati  P.  Basa  S.  Blain  A. W.  Bozzo  E.  Branchesi  M.  Christensen  L.  Ferrara  A.  Gomboc  A.  O’Brien  P. T.  Osborne  J. P.  Rossi  A.  Schüssler  F.  Spurio  M.  Stergioulas  N.  Stratta  G.  Amati  L.  Casewell  S.  Ciolfi  R.  Ghirlanda  G.  Grimm  S.  Guetta  D.  Harms  J.  Le Floc’h  E.  Longo  F.  Maggiore  M.  Mereghetti  S.  Oganesyan  G.  Salvaterra  R.  Tanvir  N. R.  Turriziani  S.  Vergani  S. D.  Balman  S.  Caruana  J.  Erkut  M. H.  Guidorzi  G.  Frontera  F.  Martin-Carrillo  A.  Paltani  S.  Porquet  D.  Sergijenko  O. 《Experimental Astronomy》2021,52(3):407-437
Experimental Astronomy - The proposed THESEUS mission will vastly expand the capabilities to monitor the high-energy sky. It will specifically exploit large samples of gamma-ray bursts to probe the...  相似文献   
40.
Relative sea-level change at the time of, and since, the most recent great earthquake at the Cascadia subduction zone is estimated from intertidal sediments at three marshes on western Vancouver Island, British Columbia. We compare the elevation of the pre-earthquake surface, which is marked by a tsunami sand sheet, with the modern depositional elevation range of the sediment type upon which the sand was deposited. At a site south of the Nootka fault zone, which is the northern boundary of the subducting Juan de Fuca plate, tidal mud overlies the pre-earthquake marsh surface. The stratigraphy at this site indicates 0.2–1.6 m of coseismic submergence and 1.1 m of subsequent emergence. In contrast, two sites to the north lack obvious stratigraphic evidence for coseismic land-level change and record between 0.1 and 1.7 m of post-earthquake submergence. These results indicate a difference in tectonic environment across the Nootka fault zone and suggest that plate-boundary rupture during the last great Cascadia earthquake probably did not extend north of central Vancouver Island.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号