全文获取类型
收费全文 | 404篇 |
免费 | 16篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 11篇 |
大气科学 | 27篇 |
地球物理 | 103篇 |
地质学 | 111篇 |
海洋学 | 27篇 |
天文学 | 113篇 |
综合类 | 1篇 |
自然地理 | 30篇 |
出版年
2023年 | 2篇 |
2022年 | 2篇 |
2021年 | 3篇 |
2020年 | 9篇 |
2019年 | 3篇 |
2018年 | 3篇 |
2017年 | 10篇 |
2016年 | 9篇 |
2015年 | 10篇 |
2014年 | 9篇 |
2013年 | 13篇 |
2012年 | 19篇 |
2011年 | 13篇 |
2010年 | 15篇 |
2009年 | 35篇 |
2008年 | 16篇 |
2007年 | 19篇 |
2006年 | 21篇 |
2005年 | 16篇 |
2004年 | 12篇 |
2003年 | 12篇 |
2002年 | 8篇 |
2001年 | 11篇 |
2000年 | 6篇 |
1999年 | 5篇 |
1998年 | 6篇 |
1997年 | 4篇 |
1996年 | 8篇 |
1995年 | 9篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1988年 | 6篇 |
1987年 | 5篇 |
1986年 | 6篇 |
1985年 | 6篇 |
1984年 | 7篇 |
1983年 | 8篇 |
1982年 | 2篇 |
1981年 | 8篇 |
1980年 | 6篇 |
1979年 | 7篇 |
1978年 | 7篇 |
1977年 | 6篇 |
1976年 | 4篇 |
1975年 | 8篇 |
1974年 | 4篇 |
1973年 | 5篇 |
1971年 | 2篇 |
排序方式: 共有423条查询结果,搜索用时 15 毫秒
31.
We present a parameter study of simulations of fragmentation regulated by gravity, magnetic fields, ambipolar diffusion, and nonlinear flows. The thin-sheet approximation is employed with periodic lateral boundary conditions, and the nonlinear flow field (“turbulence”) is allowed to freely decay. In agreement with previous results in the literature, our results show that the onset of runaway collapse (formation of the first star) in subcritical clouds is significantly accelerated by nonlinear flows in which a large-scale wave mode dominates the power spectrum. In addition, we find that a power spectrum with equal energy on all scales also accelerates collapse, but by a lesser amount. For a highly super-Alfvénic initial velocity field with most power on the largest scales, the collapse occurs promptly during the initial compression wave. However, for trans-Alfvénic perturbations, a subcritical magnetic field causes a rebound from the initial compression, and the system undergoes several oscillations before runaway collapse occurs. Models that undergo prompt collapse have highly supersonic infall motions at the core boundaries. Cores in magnetically subcritical models with trans-Alfvénic initial perturbations also pick up significant systematic speeds by inheriting motions associated with magnetically-driven oscillations. Core mass distributions are much broader than in models with small-amplitude initial perturbations, although the disturbed structure of cores that form due to nonlinear flows does not guarantee subsequent monolithic collapse. Our simulations also demonstrate that significant power (if present initially) can be maintained with negligible dissipation in large-scale compressive modes of a magnetic thin sheet, in the limit of perfect flux freezing. 相似文献
32.
Vertical land motion caused by continuing glacial isostatic adjustment is one of several important components of sea‐level change and is not limited just to previously glaciated regions. A national‐scale analysis for the British Isles shows an ellipse of present‐day relative uplift (relative sea‐level fall), ~1.2 mm a?1, broadly centred on the deglaciated mountains of Scotland. The pattern of three foci of relative subsidence, ~1 mm a?1, results from the additional interactions of the deglacial meltwater load on the Atlantic basin and the continental shelf, and the signal due to far‐field ice sheets. At a local scale, sediment compaction can more than double the rate of relative land subsidence. Relative land‐level change (the negative of relative sea‐level change) is not the same as vertical land motion. There is a spatial pattern in the difference between relative land‐level change and vertical land motion, with differences at present of approximately ?0.1 to ?0.3 mm a?1 around the British Isles and +2.5 to ?1.5 mm a?1 globally. For the wider scientific and user community, whether or not the differences are considered significant will depend upon the location, time frame and spatial scale of the study that uses such information. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
33.
Chelo PASCUA Tsutomu SATO Glenn GOLLA 《《地质学报》英文版》2006,80(2):230-235
Arsenic is usually associated with sulphide minerals formed in the geothermal environment. However, sulphide minerals are prone to dissolution after contact with meteoric water under surface oxidizing conditions. Secondary precipitates that form from the dissolution of the primary sulfides exert a greater influence on arsenic mobility in the geothermal environment. Fe-hydroxides have very good affinity with dissolved arsenate and are stable under most surface oxidizing conditions. Both amorphous silica directly precipitated from geothermal fluids and possibly a kaolinite alteration can host a small significant amount of arsenic. These silicates are also more stable under a wide range of pH and redox conditions. 相似文献
34.
David A. Yuen Melissa A. Scruggs Frank J. Spera Yingcai Zheng Hao Hu Stephen R. McNutt Glenn Thompson Kyle Mandli Barry R. Keller Songqiao Shawn Wei Zhigang Peng Zili Zhou Francesco Mulargia Yuichiro Tanioka 《地震研究进展(英文)》2022,2(3):100134
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters. 相似文献
35.
Noriko T. Kita Qing‐Zhu Yin Glenn J. MacPherson Takayuki Ushikubo Benjamin Jacobsen Kazuhide Nagashima Erika Kurahashi Alexander N. Krot Stein B. Jacobsen 《Meteoritics & planetary science》2013,48(8):1383-1400
High‐precision bulk aluminum‐magnesium isotope measurements of calcium‐aluminum‐rich inclusions (CAIs) from CV carbonaceous chondrites in several laboratories define a bulk 26Al‐26Mg isochron with an inferred initial 26Al/27Al ratio of approximately 5.25 × 10?5, named the canonical ratio. Nonigneous CV CAIs yield well‐defined internal 26Al‐26Mg isochrons consistent with the canonical value. These observations indicate that the canonical 26Al/27Al ratio records initial Al/Mg fractionation by evaporation and condensation in the CV CAI‐forming region. The internal isochrons of igneous CV CAIs show a range of inferred initial 26Al/27Al ratios, (4.2–5.2) × 10?5, indicating that CAI melting continued for at least 0.2 Ma after formation of their precursors. A similar range of initial 26Al/27Al ratios is also obtained from the internal isochrons of many CAIs (igneous and nonigneous) in other groups of carbonaceous chondrites. Some CAIs and refractory grains (corundum and hibonite) from unmetamorphosed or weakly metamorphosed chondrites, including CVs, are significantly depleted in 26Al. At least some of these refractory objects may have formed prior to injection of 26Al into the protosolar molecular cloud and its subsequent homogenization in the protoplanetary disk. Bulk aluminum and magnesium‐isotope measurements of various types of chondrites plot along the bulk CV CAI isochron, suggesting homogeneous distribution of 26Al and magnesium isotopes in the protoplanetary disk after an epoch of CAI formation. The inferred initial 26Al/27Al ratios of chondrules indicate that most chondrules formed 1–3 Ma after CAIs with the canonical 26Al/27Al ratio. 相似文献
36.
With the UK Marine Bill promoting the creation of a network of marine protected areas and similar commitments in other countries there is a need for tools to assist in their design and management. Although physical science often drives designation, the implementation of marine protected areas also encompasses political and socio-economic issues. This paper focuses on one tool in the armoury of decision-makers: choice experiments. It illustrates its application to the quantification of aspects of socio-economic value not readily incorporated into the evaluation of the costs and benefits of marine protected areas utilising cold-water deep coral reefs off the Republic of Ireland. 相似文献
37.
Helen Glenn Diana TingleySonia Sánchez Maroño Dennis HolmGurpreet Padda Ingi Runar EdvardssonAlexis Conides Kostas KapirisMintewab Bezabih Premachandra WattageSakari Kuikka 《Marine Policy》2012,36(1):54-72
This paper explores the issue of “trust” in the fisheries science community, a key corollary of effective risk communication. It presents the findings of a survey undertaken in Iceland, Greece, Spain, United Kingdom and Faroe Islands during 2008. The findings reveal differing levels of trust and mistrust in the fisheries science community between countries and between stakeholder groups, demonstrating areas for future attention in the interests of improving fisheries science and management. As this paper explores, unfortunately the “trust” necessary for effective stakeholder cooperation and participation within current fisheries science is currently somewhat lacking. The cited reasons behind this lack of trust include: a lack of soundness, credibility, responsiveness, flexibility and stakeholder involvement, flawed data and weak science, poor communications and political and lobby group interference. Notable from the results is a lack of consensus on the existence of a common language and vision. It is evident, however, that certain aspects of fisheries science are strong contributors to trust and that there are opportunities for improvement. 相似文献
38.
The giant gas planets have hot convective interiors, and therefore a common assumption is that these deep atmospheres are close to a barotropic state. Here we show using a new anelastic general circulation model that baroclinic vorticity contributions are not negligible, and drive the system away from an isentropic and therefore barotropic state. The motion is still aligned with the direction of the axis of rotation as in a barotropic rotating fluid, but the wind structure has a vertical shear with stronger winds in the atmosphere than in the interior. This shear is associated with baroclinic compressibility effects. Most previous convection models of giant planets have used the Boussinesq approximation, which assumes the density is constant in depth; however, Jupiter's actual density varies by four orders of magnitude through its deep molecular envelope. We therefore developed a new general circulation model (based on the MITgcm) that is anelastic and thereby incorporates this density variation. The model's geometry is a full 3D sphere down to a small inner core. It is nonhydrostatic, uses an equation of state suitable for hydrogen-helium mixtures (SCVH), and is driven by an internal heating profile. We demonstrate the effect of compressibility by comparing anelastic and Boussinesq cases. The simulations develop a mean state that is geostrophic and hydrostatic including the often neglected, but significant, vertical Coriolis contribution. This leads to modification of the standard thermal wind relation for a deep compressible atmosphere. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, and provide a mechanism for the transport of heat poleward, which can cause the observed flat meridional emission. We address the issue of over-forcing which is common in such convection models and analyze the dependence of our results on this; showing that the vertical wind structure is not very sensitive to the Rayleigh number. We also study the effect of rotation, showing how the transition from a rapidly to a slowly rotating system affects the dynamics. 相似文献
39.
Spring and summer phytoplankton communities in the Chukchi and Eastern Beaufort Seas 总被引:2,自引:0,他引:2
Victoria Hill Glenn Cota Dean Stockwell 《Deep Sea Research Part II: Topical Studies in Oceanography》2005,52(24-26):3369
Phytoplankton pigments and size-fractionated biomass in the Chukchi and Beaufort Seas showed spatial and temporal variation during the spring and summer of 2002. Cluster analysis of pigment ratios revealed different assemblages over the shelf, slope and basin regions. In spring, phytoplankton with particle sizes greater than 5 μm, identified as diatoms and/or haptophytes, dominated over the shelf. Smaller (<5 μm) phytoplankton containing chlorophyll b, most likely prasinophytes, were more abundant over the slope and basin. Due to extensive ice cover at this time, phytoplankton experienced low irradiance, but nutrients were near maximal for the year. By summer, small prasinophytes and larger haptophytes and diatoms co-dominated in near-surface assemblages in largely ice-free waters when nitrate was mostly depleted. Deeper in the water column at 1–15% of the surface irradiance larger sized diatoms were still abundant in the upper nutricline. Phytoplankton from the shelf appeared to be advected through Barrow Canyon to the adjacent basin, explaining similar composition between the two areas in spring and summer. Off-shelf advection was much less pronounced for other slope and basin areas, which are influenced by the low-nutrient Beaufort gyre circulation, leading to a dominance of smaller prasinophytes and chlorophytes. The correlation of large-sized fucoxanthin containing phytoplankton with the higher primary production measurements shows promise for trophic status to be estimated using accessory pigment ratios. 相似文献
40.
Glenn A. Hodgkins 《Climatic change》2013,119(3-4):705-718
Many studies have shown that lake ice-out (break-up) dates in the Northern Hemisphere are useful indicators of late winter/early spring climate change. Trends in lake ice-out dates in New England, USA, were analyzed for 25, 50, 75, 100, 125, 150, and 175 year periods ending in 2008. More than 100 years of ice-out data were available for 19 of the 28 lakes in this study. The magnitude of trends over time depends on the length of the period considered. For the recent 25-year period, there was a mix of earlier and later ice-out dates. Lake ice-outs during the last 50 years became earlier by 1.8 days/decade (median change for all lakes with adequate data). This is a much higher rate than for longer historical periods; ice-outs became earlier by 0.6 days/decade during the last 75 years, 0.4 days/decade during the last 100 years, and 0.6 days/decade during the last 125 years. The significance of trends was assessed under the assumption of serial independence of historical ice-out dates and under the assumption of short and long term persistence. Hypolimnion dissolved oxygen (DO) levels are an important factor in lake eutrophication and coldwater fish survival. Based on historical data available at three lakes, 32 to 46 % of the interannual variability of late summer hypolimnion DO levels was related to ice-out dates; earlier ice-outs were associated with lower DO levels. 相似文献