首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   17篇
  国内免费   3篇
测绘学   13篇
大气科学   30篇
地球物理   109篇
地质学   114篇
海洋学   31篇
天文学   144篇
综合类   2篇
自然地理   32篇
  2022年   2篇
  2021年   3篇
  2020年   9篇
  2019年   3篇
  2018年   3篇
  2017年   13篇
  2016年   9篇
  2015年   10篇
  2014年   9篇
  2013年   21篇
  2012年   19篇
  2011年   14篇
  2010年   16篇
  2009年   36篇
  2008年   17篇
  2007年   21篇
  2006年   25篇
  2005年   21篇
  2004年   13篇
  2003年   13篇
  2002年   14篇
  2001年   15篇
  2000年   9篇
  1999年   5篇
  1998年   8篇
  1997年   5篇
  1996年   8篇
  1995年   9篇
  1994年   2篇
  1993年   4篇
  1991年   4篇
  1990年   4篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   8篇
  1984年   7篇
  1983年   8篇
  1982年   2篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1978年   8篇
  1977年   6篇
  1976年   4篇
  1975年   8篇
  1974年   4篇
  1973年   5篇
  1972年   2篇
  1971年   2篇
排序方式: 共有475条查询结果,搜索用时 15 毫秒
81.
We report broadband infrared photometry of comets P/Stephan-Oterma and Bowell between 1 and 20 μm. Their JHK colors are similar to P/Meier and P/Tuttle and are compatible with scattering of sunlight by micron-sized grains. The thermal emission from P/Stephan-Oterma showed an effective temperature significantly higher than that expected from a blackbody in equilibrium. The thermal emission can be models be fit by models of the dust coma consisting of micron-sized grains. Most of the flux at all observed wavelengths comes from the dust grains rather than form the nucleus.  相似文献   
82.
Mineralogical and petrographic studies of a wide variety of refractory objects from the Murchison C2 chondrite have revealed for the first time melilite-rich and feldspathoid-bearing inclusions in this meteorite, but none of these is identical to any inclusion yet found in Allende. Blue spinel-hibonite spherules have textures indicating that they were once molten, and thus their SiO2-poor bulk composition requires that they were exposed to higher temperatures (>1550°C) than those deduced so far from any Allende inclusion. Melilite-rich inclusions are similar to Allende compact Type A's, but are more Al-, Ti-rich. One inclusion (MUCH-1) consists of a delicate radial aggregate of hibonite crystals surrounded by alteration products, and probably originated by direct condensation of hibonite from the solar nebular vapor. The sinuous, nodular and layered structures of another group of inclusions, spinel-pyroxene aggregates, suggest that these also originated by direct condensation from the solar nebular gas. Each type of inclusion is characterized by a different suite of alteration products and/or rim layers from all the other types, indicating modification of the inclusions in a wide range of different physico-chemical environments after their primary crystallization. All of these inclusions contain some iron-free rim phases. These could not have formed by reaction of the inclusions with fluids in the Murchison parent body because the latter would presumably have been very rich in oxidized iron. Other rim phases and alteration products could have formed at relatively low temperatures in the parent body, but some inclusions were not in the locations in which they were discovered when this took place. Some of these inclusions are too fragile to have been transported from one region to another in the parent body, indicating that low temperature alteration of these may have occurred in the solar nebula.  相似文献   
83.
A network of high-frequency (HF) radars is deployed along the New Jersey coast providing synoptic current maps across the entire shelf. These data serve a variety of user groups from scientific research to Coast Guard search and rescue. In addition, model forecasts have been shown to improve with surface current assimilation. In all applications, there is a need for better definitions and assessment of the measurement uncertainty. During a summer coastal predictive skill experiment in 2001, an array of in situ current profilers was deployed near two HF radar sites, one long-range and one standard-range system. Comparison statistics were calculated between different vertical bins on the same current profiler, between different current profilers, and between the current profilers and the different HF radars. The velocity difference in the vertical and horizontal directions were then characterized using the observed root-mean-square (rms) differences. We further focused on two cases, one with relatively high vertical variability, and the second with relatively low vertical variability. Observed differences between the top bin of the current profiler and the HF radar were influenced by both system accuracy and the environment. Using the in situ current profilers, the environmental variability over scales based on the HF radar sampling was quantified. HF radar comparisons with the current profilers were on the same order as the observed environmental difference over the same scales, indicating that the environment has a significant influence on the observed differences. Velocity variability in the vertical and horizontal directions both contribute to these differences. When the potential effects of the vertical variability could be minimized, the remaining difference between the current profiler and the HF radar was similar to the measured horizontal velocity difference (~2.5 cm/s) and below the resolution of the raw radial data at the time of the deployment  相似文献   
84.
In the Eastern Lachlan Orogen, the mineralised Molong and Junee‐Narromine Volcanic Belts are two structural belts that once formed part of the Ordovician Macquarie Arc, but are now separated by younger Silurian‐Devonian strata as well as by Ordovician quartz‐rich turbidites. Interpretation of deep seismic reflection and refraction data across and along these belts provides answers to some of the key questions in understanding the evolution of the Eastern Lachlan Orogen—the relationship between coeval Ordovician volcanics and quartz‐rich turbidites, and the relationship between separate belts of Ordovician volcanics and the intervening strata. In particular, the data provide evidence for major thrust juxtaposition of the arc rocks and Ordovician quartz‐rich turbidites, with Wagga Belt rocks thrust eastward over the arc rocks of the Junee‐Narromine Volcanic Belt, and the Adaminaby Group thrust north over arc rocks in the southern part of the Molong Volcanic Belt. The seismic data also provide evidence for regional contraction, especially for crustal‐scale deformation in the western part of the Junee‐Narromine Volcanic Belt. The data further suggest that this belt and the Ordovician quartz‐rich turbidites to the east (Kirribilli Formation) were together thrust over ?Cambrian‐Ordovician rocks of the Jindalee Group and associated rocks along west‐dipping inferred faults that belong to a set that characterises the middle crust of the Eastern Lachlan Orogen. The Macquarie Arc was subsequently rifted apart in the Silurian‐Devonian, with Ordovician volcanics preserved under the younger troughs and shelves (e.g. Hill End Trough). The Molong Volcanic Belt, in particular, was reworked by major down‐to‐the‐east normal faults that were thrust‐reactivated with younger‐on‐older geometries in the late Early ‐ Middle Devonian and again in the Carboniferous.  相似文献   
85.
The modeling of thermal emission from active lava flows must account for the cooling of the lava after solidification. Models of lava cooling applied to data collected by the Galileo spacecraft have, until now, not taken this into consideration. This is a flaw as lava flows on Io are thought to be relatively thin with a range in thickness from ∼1 to 13 m. Once a flow is completely solidified (a rapid process on a geological time scale), the surface cools faster than the surface of a partially molten flow. Cooling via the base of the lava flow is also important and accelerates the solidification of the flow compared to the rate for the ‘semi-infinite’ approximation (which is only valid for very deep lava bodies). We introduce a new model which incorporates the solidification and basal cooling features. This model gives a superior reproduction of the cooling of the 1997 Pillan lava flows on Io observed by the Galileo spacecraft. We also use the new model to determine what observations are necessary to constrain lava emplacement style at Loki Patera. Flows exhibit different cooling profiles from that expected from a lava lake. We model cooling with a finite-element code and make quantitative predictions for the behavior of lava flows and other lava bodies that can be tested against observations both on Io and Earth. For example, a 10-m-thick ultramafic flow, like those emplaced at Pillan Patera in 1997, solidifies in ∼450 days (at which point the surface temperature has cooled to ∼280 K) and takes another 390 days to cool to 249 K. Observations over a sufficient period of time reveal divergent cooling trends for different lava bodies [examples: lava flows and lava lakes have different cooling trends after the flow has solidified (flows cool faster)]. Thin flows solidify and cool faster than flows of greater thickness. The model can therefore be used as a diagnostic tool for constraining possible emplacement mechanisms and compositions of bodies of lava in remote-sensing data.  相似文献   
86.
This study presents the results from precipitation experiments carried out to investigate the partitioning of the alkaline earth cations Mg2+, Ca2+, Sr2+, and Ba2+ between abiogenic aragonite and seawater as a function of temperature. Experiments were carried out at 5 to 75 °C, using the protocol of Kinsman and Holland [Kinsman, D.J.J., Holland, H.D., 1969. The coprecipitation of cations with CaCO3 IV. The coprecipitation of Sr2+ with aragonite between 16 and 96 °C. Geochim. Cosmochim. Acta33, 1-17.] The concentrations of Mg Sr and Ba were determined in the fluid from each experiment by inductively coupled plasma-mass spectrometry, and in individual aragonite grains by secondary ion mass spectrometry. The experimentally produced aragonite grains are enriched in trace components (“impurities”) relative to the concentrations expected from crystal-fluid equilibrium, indicating that kinetic processes are controlling element distribution. Our data are not consistent with fractionations produced kinetically in a boundary layer adjacent to the growing crystal because Sr2+, a compatible element, is enriched rather than depleted in the aragonite. Element compatibilities, and the systematic change in partitioning with temperature, can be explained by the process of surface entrapment proposed by Watson and Liang [Watson, E.B., Liang, Y., 1995. A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am. Mineral.80, 1179-1187] and Watson [Watson, E.B., 1996. Surface enrichment and trace-element uptake during crystal growth. Geochim. Cosmochim. Acta60, 5013-5020; Watson, E.B., 2004. A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals. Geochim. Cosmochim. Acta68, 1473-1488]. This process is thought to operate in regimes where the competition between crystal growth rate and diffusivity in the near-surface region limits the extent to which the solid can achieve partitioning equilibrium with the fluid. A comparison of the skeletal composition of Diploria labyrinthiformis (brain coral) collected on Bermuda with results from precipitation calculations carried out using our experimentally determined partition coefficients indicate that the fluid from which coral skeleton precipitates has a Sr/Ca ratio comparable to that of seawater, but is depleted in Mg and Ba, and that there are seasonal fluctuations in the mass fraction of aragonite precipitated from the calcifying fluid (“precipitation efficiency”). The combined effects of surface entrapment during aragonite growth and seasonal fluctuations in “precipitation efficiency” likely forms the basis for the temperature information recorded in the aragonite skeletons of Scleractinian corals.  相似文献   
87.
Large disturbances in the interplanetary medium were observed by several spacecraft during a period of enhanced solar activity in early February 1986. The locations of six solar flares and the spacecraft considered here encompassed more than 100° of heliolongitude. These flares during the minimum of cycle 21 set the stage for an extensive multi-spacecraft comparison performed with a two-dimensional, magnetohydrodynamic (MHD) numerical experiment. The plasma instruments on the European Space Agency (ESA)'s GIOTTO spacecraft, on its way to encounter Comet Halley in March 1986, made measurements of the solar wind for up to 8 hours per day during February. We compare solar wind measurements from the Johnstone Plasma Analyzer (JPA) experiment on GIOTTO with the MHD simulation of the interplanetary medium throughout these events. Using plasma data obtained by the IMP-8 satellite in addition, it appears that an extended period of high solar wind speed is required as well as the simulated flares to represent the interplanetary medium in this case. We also compare the plasma and magnetometer data from VEGA-1 with the MHD simulation. This comparison tends to support an interpretation that the major solar wind changes at both GIOTTO and VEGA-1 on 8 February, 1986 were due to a shock from a W05° solar flare on 6 February, 1986 (06:25 UT). The numerical experiment is considered, qualitatively, to resemble the observations at the former spacecraft, but it has less success at the latter one.  相似文献   
88.
Two environmental tracer methods are applied to the Ti-Tree Basin in central Australia to shed light on the importance of recharge from floodouts of ephemeral rivers in this arid environment. Ground water carbon-14 concentrations from boreholes are used to estimate the average recharge rate over the interval between where the ground water sample first entered the saturated zone and the bore. Environmental chloride concentrations in ground water samples provide estimates of the recharge rate at the exact point in the landscape where the sample entered the saturated zone. The results of the two tracer approaches indicate that recharge rates around one of the rivers and an extensive floodplain are generally higher than rates of diffuse recharge that occurs in areas of lower topographic relief. Ground water 2H/1H and 18O/16O compositions are all depleted in the heavier isotopes (delta2H = -67 per thousand to -50 per thousand; delta18O = -9.2 per thousand to -5.7%o) compared with the long-term, amount-weighted mean isotopic composition of rainfall in the area (delta2H = -33.8 per thousand; delta18O = -6.3 per thousand). This indicates that recharge throughout the basin occurs only after intense rainfall events of at least 150 to 200 mm/month. Finally, a recharge map is developed to highlight the spatial extent of the two recharge mechanisms. Floodout recharge to the freshest ground water (TDS <1,000 mg/L) is approximately 1.9 mm/year compared with a mean recharge rate of approximately 0.2 mm/year to the remainder of the basin. These findings have important implications for management of the ground water resource.  相似文献   
89.
Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.  相似文献   
90.
Ethane (C2H6), methylacetylene (CH3C2H or C3H4) and diacetylene (C4H2) have been discovered in Spitzer 10-20 μm spectra of Uranus, with 0.1-mbar volume mixing ratios of (1.0±0.1)×10−8, (2.5±0.3)×10−10, and (1.6±0.2)×10−10, respectively. These hydrocarbons complement previously detected methane (CH4) and acetylene (C2H2). Carbon dioxide (CO2) was also detected at the 7-σ level with a 0.1-mbar volume mixing ratio of (4±0.5)×10−11. Although the reactions producing hydrocarbons in the atmospheres of giant planets start from radicals, the methyl radical (CH3) was not found in the spectra, implying much lower abundances than in the atmospheres of Saturn or Neptune where it has been detected. This finding underlines the fact that Uranus' atmosphere occupies a special position among the giant planets, and our results shed light on the chemical reactions happening in the absence of a substantial internal energy source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号