首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   5篇
  国内免费   1篇
测绘学   6篇
大气科学   3篇
地球物理   38篇
地质学   53篇
海洋学   6篇
天文学   8篇
自然地理   2篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   4篇
  2012年   6篇
  2011年   9篇
  2010年   10篇
  2009年   10篇
  2008年   7篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
41.
42.
Analysing S-wave splitting has become a routine step in processing multicomponent data. Typically, this analysis leads to determining the principal directions of a transversely isotropic medium with a horizontal symmetry axis, which is assumed to be responsible for azimuthal anisotropy, and to the time delays between the fast and slow S-waves. These parameters are commonly estimated layer-by-layer from the top. Errors in layer stripping occurring in shallow layers might propagate to deeper layers. We propose a method for S-wave splitting analysis and compensation that consists of inverting interval values of splitting intensity to obtain a model of anisotropic parameters that vary with time and/or depth. Splitting intensity is a robust attribute with respect to structural variations and is commutative, which means that it can be summed along a ray (or throughout a sensitivity kernel volume) and can be linearly related to anisotropic perturbations at depth. Therefore, it is possible to estimate anisotropic properties within a geological formation (e.g. the reservoir) by analysing the differences of splitting intensity measured at the top and at the bottom of the layer. This allows us to avoid layer stripping, in particular, for shallow layers where anisotropic parameters are difficult to estimate due to poor coverage, and it makes S-wave splitting analysis simpler to apply. We demonstrate this method on synthetic and real data. Because the splitting intensity attribute shows usefulness in S-wave splitting analysis in transversely isotropic media, we extend the splitting intensity theory to lower symmetry classes. It enables the characterization of tilted transversely isotropic and tilted orthorhombic media, opening new opportunities for anisotropic model building.  相似文献   
43.
Generally, the intensity and magnitude of explosive volcanic activity increase in parallel with SiO2 content. Pyroclastic-flow-forming eruptions in the Colli Albani ultrapotassic volcanic district (Italy) represent the most striking exception on a global scale, with volumes on the order of tens of cubic kilometres and K-foiditic compositions (SiO2 even <42 wt.%). Here, we reconstruct the pre-eruptive scenario and event dynamics of the ~456 ka Pozzolane Rosse (PR) eruption, the largest mafic explosive event of the Colli Albani district. In particular, we focus on the driving mechanisms for the unusually explosive eruption of a low-viscosity, mafic magma. Geologic, petrographic and geochemical data with mass balance calculations, supported by experimental data for Colli Albani magma compositions, provide evidence for significant ingestion of carbonate wall rocks by the Pozzolane Rosse K-foiditic magma. Moreover, the scattered occurrence of cored bombs in Pozzolane Rosse pyroclastic-flow deposits records carbonate entrainment even at the eruptive time scale, as also tested quantitatively by thermal modelling of magma–carbonate interaction and carbonate assimilation experiments. We suggest that the addition of free CO2 from decarbonation of country rocks was the major factor controlling magma explosivity. High CO2 activity in the volatile component, coupled with magma depressurisation, produced extensive leucite crystallisation at short time scales, resulting in a dramatic increase in magma viscosity and volatile pressurisation, which was manifested a change of eruptive dynamics from early effusion to the Pozzolane Rosse's highly explosive eruption climax.  相似文献   
44.
Gianluca Masi 《Icarus》2003,163(2):389-397
The likely existence of bodies orbiting the Sun with aphelia Q < 0.983 AU has been suggested by numerical simulations of the dynamical evolution of the near-Earth objects (NEOs) population. For obvious reasons, these hypothetical minor bodies are called inner-Earth objects (IEOs). While much progresses has been made in learning more about the Amor, Apollo, and Aten population from surveys optimized for their discovery, no large, systematic, and similar observation projects devoted to the search of IEOs have been started. For their own orbital nature, IEOs can be observed only at small solar elongations (<90°), corresponding to regions of the sky currently neglected by the modern, ongoing surveys. This paper discusses a possible ground-based approach to look for IEOs, providing some useful tricks and the results of simulated surveys devoted to their discovery. It will be shown that such a search promises interesting results, the setup of a dedicated project being highly recommended.  相似文献   
45.
The research presented in this paper deals with the numerical analysis of projectile impact on regular strength concrete (RSC), high‐strength concrete (HSC), and engineered cementitious composites (ECC) using the Lattice Discrete Particle Model (LDPM). The LDPM is chosen in this study as it naturally captures the failure mechanisms at the length scale of coarse aggregate of concrete, and its capabilities include the accurate depiction of both intrinsic and apparent rate effects in concrete, as well as fiber reinforcement effects. The model is used to predict the experimental impact response performed by four independent testing laboratories, and for each data set the model parameters are calibrated and validated using a combination of uniaxial compression, triaxial compression, uniaxial strain compression, and dogbone tests. In the first study, perforation experiments on RSC and HSC for varied impact velocities are carried out, and the exit velocity is compared with the available experimental data. The second study focuses on ECC, where multiple impact of steel and plastic fiber reinforced concrete panels are explored. A third investigation is performed on four RSC panels with varied thicknesses and subjected to the same impact velocity. In this instance, the model is used to predict the penetration depths for the different cases. Finally, in the last study, the response of large‐thickness infinite panels of sizes ranging from 300 mm to 700 mm under projectile impact is considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
46.
Relationships among chemical–physical features, total gross suspended organic matter, coverage of the seagrass Ruppia cirrhosa and its associated algal community in eight ponds of a saltworks system of western Sicily (Mediterranean Sea) were investigated in spring and summer 2004. All biological features varied both at different levels of seagrass coverage and between seasons. A low algal diversity (46 taxa, 14.75 ± 1.41 on average) was highlighted; algal coverage and species richness showed to be negatively correlated. Ruppia cirrhosa coverage was negatively correlated with algal coverage, but positively correlated with species richness. Moreover, a significant correlation among R. cirrhosa coverage, the availability of suspended matter in the water column and the chlorophyll a concentration was detected.  相似文献   
47.
48.
We present a strategy for obtaining fault-based maximum observable shaking (MOS) maps, which represent an innovative concept for assessing deterministic seismic ground motion at a regional scale. Our approach uses the fault sources supplied for Italy by the Database of Individual Seismogenic Sources, and particularly by its composite seismogenic sources (CSS), a spatially continuous simplified 3-D representation of a fault system. For each CSS, we consider the associated Typical Fault, i.e., the portion of the corresponding CSS that can generate the maximum credible earthquake. We then compute the high-frequency (1–50?Hz) ground shaking for a rupture model derived from its associated maximum credible earthquake. As the Typical Fault floats within its CSS to occupy all possible positions of the rupture, the high-frequency shaking is updated in the area surrounding the fault, and the maximum from that scenario is extracted and displayed on a map. The final high-frequency MOS map of Italy is then obtained by merging 8,859 individual scenario-simulations, from which the ground shaking parameters have been extracted. To explore the internal consistency of our calculations and validate the results of the procedure we compare our results (1) with predictions based on the Next Generation Attenuation ground-motion equations for an earthquake of Mw 7.1, (2) with the predictions of the official Italian seismic hazard map, and (3) with macroseismic intensities included in the DBMI04 Italian database. We then examine the uncertainties and analyse the variability of ground motion for different fault geometries and slip distributions.  相似文献   
49.
The Villa Olmo Conglomerate (lower member of the Como Conglomerate Formation, Gonfolite Lombarda Group, Southern Alps, Italy) represents the first coarse clastic inputs into the Oligocene Southalpine Foredeep. A number of techniques including sedimentary lithofacies analyses, clast counts on turbidite conglomerate bodies, sandstone petrography through Gazzi–Dickinson point‐count method and XRF analyses, and optical and minero‐chemical analyses on single clasts have been performed, in order to better define the sediment source area and geodynamic conditions which promoted sedimentation in the Southalpine Foredeep at the end of the Oligocene. The Villa Olmo Conglomerate interdigitates with the upper part of the Chiasso Formation, and gradually passes upward into the overlying Como Conglomerate Formation. Provenance analyses (conglomerate clast counts and sandstone petrography) reveal a strong metamorphic provenance signal, likely sourced from eroded Southalpine basement. An increase in igneous plutonic clasts reflects sediment supply from the Southern Steep Belt and a decrease of volcano‐sedimentary Mesozoic cover sequences. Optical and minero‐chemical analyses on volcanic detritus detect the presence of sub‐intrusive to effusive, andesite to rhyolite products, ascribable to the Varese‐Lugano Permian volcanoclastic suite, as well as Oligocene andesite products. Plutonic clasts document the presence of tonalites, granites, and brittle deformed granodiorites (with two micas), being likely sourced from the tonalite tail of the Bergell Pluton and the plutonic units of the Bellinzona‐Dascio Zone. The identification of this provenance suite implies palaeo‐drainage from the region between Varese (Southern Alps) and the Bellinzona‐Dascio Zone (Central Alps). The Villa Olmo Conglomerate is the first depositional record of the onset of tectonically driven erosion in the Alpine belt. We infer that the previous low sediment budget regime (Eocene–Middle Oligocene) was a consequence of a tectonically controlled melting phase, during which tectonic events promoted magmatic production in the middle crust of the Central Alps at rates higher than those of crustal deformation, so inhibiting sediment production. We conclude that changes in the deep structures of the Alpine Orogenic chain have controlled the main geodynamic processes during Oligocene–Neogene times, and have controlled sediment composition and supply into the Southalpine Foredeep. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号