首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   614篇
  免费   12篇
  国内免费   4篇
测绘学   47篇
大气科学   46篇
地球物理   143篇
地质学   240篇
海洋学   51篇
天文学   79篇
自然地理   24篇
  2019年   5篇
  2018年   7篇
  2017年   9篇
  2016年   17篇
  2015年   16篇
  2014年   14篇
  2013年   23篇
  2012年   7篇
  2011年   26篇
  2010年   31篇
  2009年   25篇
  2008年   17篇
  2007年   27篇
  2006年   23篇
  2005年   26篇
  2004年   19篇
  2003年   16篇
  2002年   24篇
  2001年   16篇
  2000年   8篇
  1999年   17篇
  1998年   6篇
  1997年   6篇
  1995年   9篇
  1994年   8篇
  1993年   10篇
  1991年   17篇
  1990年   8篇
  1989年   9篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1983年   7篇
  1981年   6篇
  1980年   8篇
  1979年   6篇
  1977年   6篇
  1976年   8篇
  1975年   5篇
  1974年   4篇
  1972年   4篇
  1971年   5篇
  1966年   6篇
  1964年   6篇
  1962年   4篇
  1960年   6篇
  1956年   4篇
  1952年   5篇
  1949年   4篇
  1948年   5篇
排序方式: 共有630条查询结果,搜索用时 15 毫秒
621.
622.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
623.
624.
The celestial mechanics approach: theoretical foundations   总被引:4,自引:3,他引:1  
Gravity field determination using the measurements of Global Positioning receivers onboard low Earth orbiters and inter-satellite measurements in a constellation of satellites is a generalized orbit determination problem involving all satellites of the constellation. The celestial mechanics approach (CMA) is comprehensive in the sense that it encompasses many different methods currently in use, in particular so-called short-arc methods, reduced-dynamic methods, and pure dynamic methods. The method is very flexible because the actual solution type may be selected just prior to the combination of the satellite-, arc- and technique-specific normal equation systems. It is thus possible to generate ensembles of substantially different solutions—essentially at the cost of generating one particular solution. The article outlines the general aspects of orbit and gravity field determination. Then the focus is put on the particularities of the CMA, in particular on the way to use accelerometer data and the statistical information associated with it.  相似文献   
625.
Detailed measurements of three-dimensional beach cusp morphology were made on a steep gradient, low energy, microtidal beach in Perth, Western Australia. During the field campaign a variety of wave conditions and tidal ranges were experienced, and these differing hydrodynamic conditions were reflected in a consistent pattern of morphological changes to the beach cusp system. A useful parameter to delineate between trends of cusp destruction and re-formation appeared to be the surf similarity parameter ξ = tan β/√I0/L0, where H0 is offshore wave height, L0 is deep water wave length and tan β is beach gradient. For ξ < 1·2 the beach cusps were planed off, whereas cusp morphology was enhanced when ξ > 1·2. A small storm was experienced at the start of the field campaign period and resulted in considerable erosion of the beach face. The cusp morphology across the lower beachface was destroyed, but a subtle remnant of the pre-storm cusp morphology was preserved on the upper beachface. When cusps reformed after the storm, under the influence of declining wave conditions, they appeared at the same location and with the same dimensions as the pre-storm cusp morphology. Hence, it is considered that the cusp re-formation was controlled more by the antecedent morphology than the hydrodynamic conditions. This indicates that positive feedback between swash hydrodynamics and beachface morphology, necessary to form beach cusps, does not require a large variation in relief. © 1997 John Wiley & Sons, Ltd.  相似文献   
626.
Deposit-feeding holothurians often dominate the megafauna in bathyal deep-sea settings, in terms of both abundance and biomass. Molpadia musculus is particularly abundant at about 3400 m depth in the Nazaré Canyon on the NE Atlantic Continental Margin. However, these high abundances are unusual for burrowing species at this depth. The objective of this research was to understand the reasons of the massive occurrence of these molpadiid holothurians in the Nazaré Canyon. To address this question we investigated possible trophic interactions with bacteria at sites where the organic content of the sediment was different (Setúbal and Cascais Canyons, NE Atlantic Continental Margin). The molecular fingerprinting technique of Denaturing Gradient Gel Electrophoresis (DGGE) with band sequencing, combined with non-metric multi-dimensional scaling and statistical analyses, was used to compare the bacterial community diversity in canyon sediments and holothurian gut contents. Our results suggest that M. musculus does not need to develop a specialised gut bacterial community to aid digestion where the sediment is rich in organic matter (Nazaré Canyon); in contrast, such a community may be developed where the sediment is poorer in organic matter (Cascais Canyon).  相似文献   
627.
GNSS processing at CODE: status report   总被引:26,自引:19,他引:7  
Since May 2003, the Center for Orbit Determination in Europe (CODE), one of the analysis centers of the International GNSS Service, has generated GPS and GLONASS products in a rigorous combined multi-system processing scheme, which promises the best possible consistency of the orbits of both systems. The resulting products, in particular the satellite orbits and clocks, are easily accessible by the user community. In the first part of this article, we focus on the generation of the combined global products at CODE, where we put emphasis not only on accuracy, but also on completeness. We study the impact of GLONASS on the CODE products, and the benefit of using them. Last, but not least, we introduce AGNES (Automated GNSS Network for Switzerland), a regional tracking network of small extensions (roughly 400 km East–West, 200 km North–South), which consequently tracks all GNSS satellites and analyzes their measurements using the CODE products.  相似文献   
628.
Following the discovery of asphalt volcanism in the Campeche Knolls a research cruise was carried out in 2006 to unravel the nature of the asphalt deposits at Chapopote. The novel results support the concept that the asphalt deposits at the seafloor in 3000 m of water depth originate from the seepage of heavy petroleum with a density slightly greater than water. The released petroleum forms characteristic flow structures at the seafloor with surfaces that are ‘ropy’ or ‘rough’ similar to magmatic lava flows. The surface structures indicate that the viscosity of the heavy petroleum rapidly increases after extrusion due to loss of volatiles. Consequently, the heavy petroleum forms the observed asphalt deposit and solidifies. Detailed survey with a remotely operated vehicle revealed that the asphalts are subject to sequential alterations: e.g. volume reduction leading to the formation of visible cracks in the asphalt surface, followed by fragmentation of the entire deposit. While relatively fresh asphalt samples were gooey and sticky, older, fragmented pieces were found to be brittle without residual stickiness. Furthermore, there is evidence for petroleum seepage from below the asphalt deposits, leading to local up-doming and, sometimes, to whip-shaped extrusions. Extensive mapping by TV-guided tools of Chapopote Asphalt Volcano indicates that the main asphalt deposits occur at the south-western rim that borders a central, crater-like depression. The most recent asphalt deposit at Chapopote is the main asphalt field covering an area of ∼2000 m2. Asphalt volcanism is distinct from oil and gas seepage previously described in the Gulf of Mexico and elsewhere because it is characterized by episodic intrusions of semi-solid hydrocarbons that spread laterally over a substantial area and produce structures with significant vertical relief. As Chapopote occurs at the crest of a salt structure it is inferred that asphalt volcanism is a secondary result of salt tectonism.  相似文献   
629.
630.
Numerical integrations of 99 orbits centered on that of comet P/Scotti (P/2000 Y3), and of the nominal orbit, were made 4000 days backwards in time, and 73000 days into the future. The integrations show that this comet has been transferred into its present orbit as recently as 1998. The future orbital evolution indicates a stable period for almost 150 years, when another close encounter with Jupiter may lead to further drastic changes of the present orbit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号