首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   1篇
  国内免费   1篇
测绘学   6篇
大气科学   17篇
地球物理   19篇
地质学   53篇
天文学   5篇
自然地理   2篇
  2022年   1篇
  2020年   1篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   13篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1990年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1969年   3篇
  1967年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
81.
The earthquake is known to be an unpredictable geophysical phenomenon. Only few seismic indicators and assumptions of earthquakes can be predicted with probable certainty. This study attempts to analyze the earthquakes over the Indo-Himalayan Border region including Bhutan, Bangladesh, Nepal, China and India during the period from 1995 to 2015. Bangladesh, Bhutan and China borders experience fewer earthquakes than Nepal and India border regions. However, Indo-China rim has inconsistency and vast range in its magnitude. Bangladesh though is a small country with respect to others, but it experiences earthquakes comparable to Bhutan. Nepal experiences highest number of earthquakes. In the last 20 years around 800 records have been observed with moment magnitude > 4.0 Richter scale, while very few records (around 10–12) have been observed for large earthquakes having moment magnitude > 6.0 Richter scale over the region. In this study adaptive neuro-fuzzy inference system has been implemented to assess the predictability of seismic moment associated with large earthquakes having the moment magnitude between 6.0 and 8.0 Richter scales using different combination of epochs, technique and membership functions. The Gaussian membership function with hybrid technique and 40 epochs is observed to be the reasonable model on the basis of the selected spatial and temporal scale. The forecast error in terms of root-mean-square error with the stopping criterion 0.001 has been observed to be 0.006 in case of large earthquakes (> 6.5 Richter scale), that is, forecast accuracy of 99.4%. The model bias of 0.6% may be due to inadequate number of large earthquakes having moment magnitude > 6.5 Richter scale over the region.  相似文献   
82.
The aim of the present study is to develop an adaptive neuro-fuzzy inference system (ANFIS) to forecast the peak gust speed associated with thunderstorms during the pre-monsoon season (April?CMay) over Kolkata (22°32??N, 88°20??E), India. The pre-monsoon thunderstorms during 1997?C2008 are considered in this study to train the model. The input parameters are selected from various stability indices using statistical skill score analysis. The most useful and relevant stability indices are taken to form the input matrix of the model. The forecast through the hybrid ANFIS model is compared with non-hybrid radial basis function network (RBFN), multi layer perceptron (MLP) and multiple linear regression (MLR) models. The forecast error analyses of the models in the test cases reveal that ANFIS provides the best forecast of the peak gust speed with 3.52% error, whereas the errors with RBFN, MLP, and MLR models are 10.48, 11.57, and 12.51%, respectively. During the validation with the 2009 observations of the India Meteorological Department (IMD), the ANFIS model confirms its superiority over other comparative models. The forecast error during the validation of the ANFIS model is observed to be 3.69%, with a lead time of <12?h, whereas the errors with RBFN, MLP, and MLR are 12.25, 13.19, and 14.86%, respectively. The ANFIS model may, therefore, be used as an operational model for forecasting the peak gust speed associated with thunderstorms over Kolkata during the pre-monsoon season.  相似文献   
83.
The Indian summer monsoon of 1982 and 1997 depicts disparities, however, maximum sea surface temperature anomaly over Niño 3 region is observed in the following winter of both the years. The inter-annual variation of sea surface temperature anomaly shows maximum peak during 1982/83 and 1997/98 El Niño events. The inter-annual variation of multivariate ENSO index also supports the above observation. The analyses of the entire tropical Pacific basin including the equatorial region reveal an anomalous behavior of the mean sea level pressure (MSLP) and the convective activities. The observations further reveal that the negative anomaly in monsoon rainfall over India prevails throughout the monsoon season except for the month of August in 1982, while in the year 1997 the monsoon rainfall anomaly shows random variations. The comparison between the summer monsoon rainfall of 1982 and 1997 depicts that the magnitude of the positive anomaly is same in the month of August. The condition over tropical Pacific during 1982/83 and 1997/98 has been investigated through the variation of outgoing long wave radiation (OLR), MSLP and pressure vertical velocity. The time–longitude plots of OLR and MSLP reveal the changes in pressure distribution and convective pattern over the tropical equatorial Pacific. The zonal and meridional cross section of pressure vertical velocity over the tropical Pacific and tropical Indian Ocean facilitates to understand the strength of the vertical motion during the monsoons of 1982 and 1997.  相似文献   
84.
As the world's highest and largest plateau, the Qinghai–Xizang Plateau has experienced a greater warming than the Northern Hemisphere and global averages. This warming has been reported to exhibit an elevation-dependent pattern. However, the finding involved plenty of uncertainties caused by the spatially limited datasets and complex topography. Here, we explored an approach integrating satellite-derived LST data and ground records to generate a spatially continuous air temperature dataset for the plateau grasslands from 2003 to 2012, and then examined influences of elevation/topography on temperature change trends. The derived temperature dataset was validated to be closely correlated with field-station records. Based on the derived spatially continuous temperature datasets, we found an opposite change trend of annually average temperature between Qinghai and Xizang Province. The contrasted trend was obvious in daytime and more so in summer season. By analyzing the temperature trend in relation to elevation, we found an enhanced temperature change trend in higher elevation than in lower elevation for autumn nights and winter temperatures, while the temperature change trends for other seasons were more evident in lower elevation areas. The varying temperature change trends as regulated by elevation implies that temperate grasslands have experienced a more rapid temperature change than alpine grasslands during the past decade.  相似文献   
85.
The Indian summer monsoon (ISM) is largely influenced by intra-seasonal variability like break and active phases of monsoon. In the present study, different cloud and aerosol parameters are considered and analyzed to formulate a cloud–aerosol coupled index (CACI) that can aid in forecasting the break phase of ISM. The method of principal component analysis is implemented to identify the significant cloud and aerosol parameters during break and active phases of ISM. The threshold ranges of each parameter are evaluated by using the normal probability density function. The result reveals that for break phase, the significant parameters are cloud water path (CWP), cloud optical depth, aerosol index, zonal wind (ZW), and meridional wind (MW) at 850 hPa pressure level whereas for active phase, the parameters found to be important are aerosol optical depth, CWP, ZW, and MW at 850 hPa pressure level. The significantly correlated (p?相似文献   
86.
Thunderstorms prevailing over tropics and midlatitudes depict dissimilar features relating to the thermodynamic and dynamic aspects. The identification of the physical characteristics of the tropical and midlatitude thunderstorms is the main objective of the present study. The stations Kolkata (22.6°N, 88.4°E) and Denver (39.47°N, 104.32°W) are selected from the tropics and midlatitudes for the comparative analyses. The study reveals that the average storm relative helicity (SRH) and the lapse rate between 700 and 500 hPa level is much higher over Denver compared to Kolkata during thunderstorm days. The study further reveals that the surface to mid troposphere (upto 500 hPa) become drier (~2 times) over Denver than Kolkata prior to the occurrence of thunderstorms while the upper tropospheric (300–100 hPa) humidity remains comparable for both the locations.  相似文献   
87.
Analysis of a quality-controlled database of Gulf Stream warm-core rings (WCRs) between 75° and 50°W during 1978–1999 demonstrates a significant correlation between WCR occurrences and variations in large-scale atmospheric forcing related to the state of the North Atlantic Oscillation (NAO). The mechanisms for linking the NAO with the rate of WCR occurrences are two-fold: (1) the influence of the NAO on Gulf Stream (GS) position, which could affect the interaction of the Gulf Stream with the New England Seamounts chain and thus allow for a higher/lower number of WCR occurrences; (2) the NAO-induced eddy kinetic energy (EKE) variability in the Gulf Stream region (GSR), which is indicative of the baroclinic instability processes necessary for WCR formation. Variability in GS movement is studied by analyzing annual mean positions of the Gulf Stream North Wall obtained from satellite-derived sea surface temperature (SST) frontal charts. Response of GSR EKE to fluctuations in the state of the NAO is examined with a numerical simulation of the North Atlantic basin from 1980–1999. The North Atlantic basin is simulated using a 1/6°-resolution eddy-resolving Regional Ocean Modeling System (ROMS) model that spins up with Southampton Oceanography Center (SOC) ocean-atmosphere atlas-derived atmospheric forcing fields. Model-derived EKE estimates are observed to be in good agreement with TOPEX/Poseidon altimeter-based EKE estimates as well as with results from other modeling studies for the North Atlantic basin. We suggest that lateral movement of the GS may not be the primary mechanism causing variation in the rate of WCR occurrences, because GS position is observed to respond at a lag of one year, whereas annual rates of WCR occurrences respond at 0-year lag to the NAO. Based on results from numerical simulations of the North Atlantic basin, adjustment to NAO-induced wind forcing is seen to impact the GSR EKE intensity and possibly the related baroclinic instability structure of the GS at 0-year lag. These results suggest that NAO-induced interannual variability in GSR EKE is the most likely mechanism affecting WCR occurrences. Numerical simulations show that high (low) phases in the state of the NAO exhibit higher (lower) EKE in the GSR, providing a greater (lesser) source of baroclinic instability to the GS front, possibly resulting in higher (lower) occurrences of WCRs.  相似文献   
88.
Crop phenological parameters, such as the start and end time of the crop growth, the total length of the growing season, time of peak vegetation and rate of greening and senescence are important for planning crop management and crop diversification/intensification. Multi-temporal remote sensing data provides opportunity to characterize the crop phenology at regional level. This study was conducted during the kharif season of the year 2001–02 for Punjab. The ten-day Normalised Difference Vegetation Index (NDVI) composite products, with 1 km spatial resolution, available from the Vegetation sensor onboard SPOT4 were used for the study. Twenty-one temporal datasets from May 1, 2001 to November 21, 2001 were used. Logical modelling approach was followed to compute the minimum and maximum NDVI, the amplitude of NDVI, the threshold NDVI during sowing and harvest, the crop duration, integrated NDVI and skewness of profile. The analysis showed that before July beginning, in the whole of Punjab, sowing/planting was over. It was found that the crop emergence in the eastern part of the state started earlier than the western region. The maximum NDVI, which represented peak vegetative stage, was above 0.7 and occurred mostly during August. The duration of crops ranged between 90–140 days, with majority between 110–120 days. Total integrated NDVI in Punjab was generally above 60. Using principal component analysis and divergence analysis seven best metrics were selected for crop discrimination.  相似文献   
89.
The fast growth in population and expansion of urban built area has led to the transformation of the natural landscape into impervious surfaces. Remote sensing-based estimate of impervious surface area (ISA) has emerged as an important indicator for the assessment of water resources depletion in urban areas and developed a correlation between land-use change and their potential impact on urban hydrology. In the present work, a remote sensing-based Impervious Surface Area (ISA) was carried out for New Okhla Industrial Development Authority (NOIDA) city, one of the fastest growing cities in National Capital Region (NCR) of India. The impervious surface area (ISA) of NOIDA was calculated for the years 2001, 2007 and 2014 using multi-temporal LANDSAT thermal data by applying linear spectral mixing analysis (LSMA) techniques to monitor the growth rate of impervious surface. The results observed by analysis of multi-temporal satellite images show an extreme temporal change in the growth of ISA in the city. The ISA observed for the year 2001 is 28 sq.km; in 2007, its increase was 48 sq.km and was 132 in 2014. The results were observed from this work through the use of satellite data which is very important for water resource management, planning and prediction of ISA impact on hydrology.  相似文献   
90.
Suspended sediments present in the flow are known to affect the flow resistance, velocity distribution and turbulent characteristics. Experiments were conducted in the laboratory flume to see the effect of suspended sediment concentration (SSC) on local scour around a cylindrical pier for a wide range of clay–sand mixed sediment beds for SSC up to 2700 mg/L. It has been observed that the effect of SSC on equilibrium scour hole parameters such as maximum equilibrium scour depth, and longitudinal and transverse extent of scour hole can be significant. Present data showed that the presence of SSC in the range 993–1332 mg/L can increase maximum equilibrium scour depth as much as 1.54 times compared to the clear water case. However, tests made for SSC in the range 2456–2700 mg/L showed that the maximum equilibrium scour depth reduced compared to that for SSC in the range 993–1332 mg/L, but these maximum equilibrium scour depths were still larger than that obtained for clear water. The effect of SSC on time variation of scour and equilibrium scour hole geometry was further investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号