首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67799篇
  免费   888篇
  国内免费   497篇
测绘学   1681篇
大气科学   4689篇
地球物理   13479篇
地质学   24017篇
海洋学   5797篇
天文学   15660篇
综合类   158篇
自然地理   3703篇
  2021年   627篇
  2020年   690篇
  2019年   681篇
  2018年   1627篇
  2017年   1515篇
  2016年   1836篇
  2015年   1032篇
  2014年   1781篇
  2013年   3450篇
  2012年   2033篇
  2011年   2684篇
  2010年   2379篇
  2009年   3222篇
  2008年   2709篇
  2007年   2705篇
  2006年   2596篇
  2005年   1924篇
  2004年   1916篇
  2003年   1800篇
  2002年   1746篇
  2001年   1580篇
  2000年   1521篇
  1999年   1255篇
  1998年   1264篇
  1997年   1294篇
  1996年   1076篇
  1995年   1090篇
  1994年   1009篇
  1993年   849篇
  1992年   831篇
  1991年   803篇
  1990年   891篇
  1989年   789篇
  1988年   746篇
  1987年   885篇
  1986年   762篇
  1985年   979篇
  1984年   1037篇
  1983年   1020篇
  1982年   923篇
  1981年   907篇
  1980年   840篇
  1979年   761篇
  1978年   726篇
  1977年   683篇
  1976年   645篇
  1975年   637篇
  1974年   633篇
  1973年   641篇
  1971年   405篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
901.
In this study, we present Th–U disequilibria as well as radiogenic and trace element data for recent volcanic rocks from the Nevados de Payachata volcano which erupted through ∼70 km of continental crust in the Central Volcanic Zone of the Andes (18°S, 69°W). Both lavas and mineral separates were analyzed by mass spectrometry for 238U–230Th disequilibria. The lavas are characterized either by 230Th enrichment or depletion relative to its parent nuclide 238U. Mineral separates are used to derive U–Th isochron ages and these ages compare favorably with inferred stratigraphic ages or K–Ar ages, although in one case the U–Th age is significantly older than the stratigraphic age. Despite relatively constant Sr, Nd, and Pb isotope ratios, the lavas display inverse trends in 230Th/238U versus Ce/Yb or Ba/Hf diagrams. These trends cannot be interpreted by simple two-component mixing. Rather, there must be three (and perhaps four components) involved in the genesis of the Parinacota lavas. A mantle wedge, a slab fluid, and a lower crustal component can be identified. A sediment component is more difficult to detect as it is difficult to decipher its signature because of the strong crustal influence. The existence of binary arrays can be explained by variable amounts of crustal material. The process of crust–mantle interaction must have been short enough to preserve U–Th disequilibrium (<300 ka). Received: 21 April 1999 / Accepted: 11 March 2000  相似文献   
902.
Delineation of detailed mantle structure frequently requires the separation of source signature and structural response from seismograms recorded at teleseismic distances. This deconvolution problem can be posed in a log-spectral domain where the operation of time-domain convolution is reduced to an additive form. The introduction of multiple events recorded at many stations leads to a system of consistency equations that must be honoured by both the source time functions and the impulse responses associated with propagation paths between sources and receivers. The system is inherently singular, and stabilization is accomplished through the supply of an initial estimate of the source time function. Although alternative choices exist, an effective estimate is derived from the eigenimage associated with the largest eigenvalue in a singular-value decomposition of the suite of aligned seismograms corresponding to a given event. The relation of the deconvolution scheme to simultaneous least-squares deconvolution is examined. Application of the methodology to broadband teleseismic P waveforms recorded on the Canadian National Seismograph Network demonstrates the retrieval of effective Green's functions including secondary phases associated with upper-mantle structure.  相似文献   
903.
Summary Extended integrations of semi-Lagrangian and Eulerian shallow water primitive equation models are performed. The semi-Lagrangian model used the semi-implicit two-time-level scheme. The Eulerian model used a conserving nonlinear advection scheme.For low resolution and longer integrations, difficulties were encountered with the semi-Lagrangian model which were absent in the Eulerian model. These difficulties are discussed.With 14 Figures  相似文献   
904.
905.
The results of studying the composition of hydrocarbon gases (C1–C5) and organic matter in bottom sediments of the Ivankovo Reservoir in 1995, 2004, and 2005 are given. The methods used in the study include vapor-phase gas chromatography, instrumental pyrolysis gas chromatography, and mass-spectrometry for determining organic carbon δ 13Corg. The gas field of bottom sediments in different regions of the reservoir varies widely in terms of gas saturation and the spectrum of hydrocarbon gases. This suggests the heterogeneous composition of organic matter in the sediments and different conditions of its input and transformation processes. The gases were found to contain saturated hydrocarbons from methane to pentane C1–C5, including isomers i-C4 and i-C5 and unsaturated compounds C2–C4. A correlation was found to exist between methane distribution and the distribution of its more high-molecular homologues, which confirms their genetic relationship in bottom sediments. The obtained results show an increase in the rate of microbiological processes and organic matter transformation for most regions in the Ivankovo Reservoir. The only exceptions are the zones of Moshkovichskii Bay and the sections at Gorodnya and Konakovo, where technogenic organic matter is being accumulated. The high information value of hydrocarbon gases as biogeochemical markers of the sources of organic matter and the rates of its transformation is demonstrated. The isotopic composition of organic-matter carbon in the bottom sediments of the Ivankovo Reservoir δ 13C varies from ?26.21 to ?30.86‰.  相似文献   
906.
This paper presents evidence that the extension of conclusions based on the widely used simplified, one story, eccentric systems of the shear‐beam type, to actual, nonsymmetric buildings and consequent assessments of the pertinent code provisions, can be quite erroneous, unless special care is taken to match the basic properties of the simplified models to those of the real buildings. The evidence comes from comparisons of results obtained using three variants of simplified models, with results from the inelastic dynamic response of three‐ and five‐story eccentric buildings computed with detailed MDOF systems, where the members are idealized with the well‐known plastic hinge model. In addition, a convincing answer is provided on a pertinent hanging controversy: For frame‐type buildings, designed in accordance with the dynamic provisions of modern codes (such as EC8 or IBC2000), which allow reduced shears at the stiff edge due to torsion, the frames at the flexible sides are the critical elements in terms of ductility demands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
907.
In the aureole of the Beinn an Dubhaich granite, Skye, the minimum observed median forsterite-calcite-calcite dihedral angle varies from 110° at the olivinein isograd to about 165° (the equilibrium value) at the granite-limestone contact. Laboratory experiments were performed to investigate the kinetics of this textural change. It was found that the rate of change of the forsterite-calcite-calcite dihedral angle followed approximately first-order kinetics with an activation energy of 48±4 kJ mol-1 for fluid-present conditions, and 90 ±4 kJ mol-1 for fluid-absent conditions. Scanning ion imaging demonstrated that, at least in the early stages of textural change, solution-reprecipitation of the calcite was the rate determining step in the fluid-present runs. The latter result and the value of the activation energy are both consistent with the activation energy found by previous authors for (albeit zeroth order) silicate-aqueous solution solution-reprecipitation reactions. The value of activation energy for the dry data does not correspond to those for either grain boundary or volume diffusion of oxygen or magnesium in forsterite. The mechanism for textural equilibration in the fluid-absent runs is uncertain. Application of the experimentally-derived rate equation to the Beinn an Dubhaich marbles gave activation energies higher than those obtained experimentally. It is concluded from consideration of grain growth effects that activation energies derived from the Beinn an Dubhaich marbles probably reflect textural equilibration under predominantly fluid-absent conditions.  相似文献   
908.
Rare earth elements (REE) have been mined in North America since 1885, when placer monazite was produced in the southeast USA. Since the 1960s, however, most North American REE have come from a carbonatite deposit at Mountain Pass, California, and most of the world’s REE came from this source between 1965 and 1995. After 1998, Mountain Pass REE sales declined substantially due to competition from China and to environmental constraints. REE are presently not mined at Mountain Pass, and shipments were made from stockpiles in recent years. Chevron Mining, however, restarted extraction of selected REE at Mountain Pass in 2007. In 1987, Mountain Pass reserves were calculated at 29 Mt of ore with 8.9% rare earth oxide based on a 5% cut‐off grade. Current reserves are in excess of 20 Mt at similar grade. The ore mineral is bastnasite, and the ore has high light REE/heavy REE (LREE/HREE). The carbonatite is a moderately dipping, tabular 1.4‐Ga intrusive body associated with ultrapotassic alkaline plutons of similar age. The chemistry and ultrapotassic alkaline association of the Mountain Pass deposit suggest a different source than that of most other carbonatites. Elsewhere in the western USA, carbonatites have been proposed as possible REE sources. Large but low‐grade LREE resources are in carbonatite in Colorado and Wyoming. Carbonatite complexes in Canada contain only minor REE resources. Other types of hard‐rock REE deposits in the USA include small iron‐REE deposits in Missouri and New York, and vein deposits in Idaho. Phosphorite and fluorite deposits in the USA also contain minor REE resources. The most recently discovered REE deposit in North America is the Hoidas Lake vein deposit, Saskatchewan, a small but incompletely evaluated resource. Neogene North American placer monazite resources, both marine and continental, are small or in environmentally sensitive areas, and thus unlikely to be mined. Paleoplacer deposits also contain minor resources. Possible future uranium mining of Precambrian conglomerates in the Elliott Lake–Blind River district, Canada, could yield by‐product HREE and Y. REE deposits occur in peralkaline syenitic and granitic rocks in several places in North America. These deposits are typically enriched in HREE, Y, and Zr. Some also have associated Be, Nb, and Ta. The largest such deposits are at Thor Lake and Strange Lake in Canada. A eudialyte syenite deposit at Pajarito Mountain in New Mexico is also probably large, but of lower grade. Similar deposits occur at Kipawa Lake and Lackner Lake in Canada. Future uses of some REE commodities are expected to increase, and growth is likely for REE in new technologies. World reserves, however, are probably sufficient to meet international demand for most REE commodities well into the 21st century. Recent experience shows that Chinese producers are capable of large amounts of REE production, keeping prices low. Most refined REE prices are now at approximately 50% of the 1980s price levels, but there has been recent upward price movement for some REE compounds following Chinese restriction of exports. Because of its grade, size, and relatively simple metallurgy, the Mountain Pass deposit remains North America’s best source of LREE. The future of REE production at Mountain Pass is mostly dependent on REE price levels and on domestic REE marketing potential. The development of new REE deposits in North America is unlikely in the near future. Undeveloped deposits with the most potential are probably large, low‐grade deposits in peralkaline igneous rocks. Competition with established Chinese HREE and Y sources and a developing Australian deposit will be a factor.  相似文献   
909.
The connection between the removal of native vegetation, rising water tables and increasing stream salinity has been established for many catchments across Australia. However, the West Moorabool River in south west Victoria is an example of a catchment where there has been little discernable effect on groundwater levels following land clearing. Over the past 150 years, a significant portion of the catchment has been cleared of dense forest for agricultural development. Historic standing water-level records from 1870–1871 and 1881 are compared with contemporary measurements (1970s to 2007) recorded in the government bore databases. The data show that the earliest recorded groundwater levels are well within the seasonal range of values observed today. By integrating geology and hydrogeology with historical observations of groundwater levels, climate data and land use, the contemporary field observations of stream salinity are linked to the changed water use and shift in rainfall. In contrast to the normally accepted axiom, reafforestation as a management strategy to mitigate the rising salinity in the West Moorabool River catchment would seem inappropriate.  相似文献   
910.
We present a two‐dimensional model of the development of scree slopes using the discrete‐element method. We concentrate on the dynamics of the accumulating debris at the cliff foot rather than on the failure modes of the cliff‐face or shape of the underlying rock surface. The evolution of this unconsolidated material is intermittent and systematically changing over time, with an early high disturbance regime, dominated by a characteristic event size (where 65% of particles in the debris are in motion to some extent), replaced at later times by many shallow slides interspersed with infrequent large events that involve motion through almost the full scree depth. These large slides lead to a stratigraphy in which the layers of material are stretched almost horizontal near the base of the slope. The scree surface thus shows a gradient in age with most recent rock‐fall close to the cliff and the oldest rock‐fall debris outcropping at the foot. The final surface slope tends to show little curvature, and the final mean slope is well correlated with the angle of internal friction of the particles, although the change is very small over a wide range of friction angles [final slope (in degrees relative to horizontal) ~ 0.043 × internal friction angle + 17.49, with a correlation coefficient of 0.89, p‐value 0.0001]. Some weak size‐segregation of the debris is found, but this seems to have little to do with individual particles bounding down the slope. The shape of the rock core agrees largely with the analytic forms given by Fisher–Lehmann and Bakker–Le Heux expressions, but the original simple Fisher quadratic can give the best fit. Overall the evolution shows a remarkable insensitivity to the model parameters, suggesting that the controls on dry scree‐slope evolution are primarily geometric in character. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号