首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   9篇
  国内免费   1篇
测绘学   3篇
大气科学   14篇
地球物理   76篇
地质学   152篇
海洋学   25篇
天文学   46篇
综合类   1篇
自然地理   5篇
  2018年   4篇
  2017年   7篇
  2016年   5篇
  2014年   5篇
  2013年   12篇
  2012年   9篇
  2011年   7篇
  2010年   12篇
  2009年   14篇
  2008年   16篇
  2007年   10篇
  2006年   8篇
  2005年   6篇
  2004年   9篇
  2003年   3篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1992年   3篇
  1990年   7篇
  1989年   6篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1977年   4篇
  1976年   5篇
  1975年   3篇
  1973年   6篇
  1971年   3篇
  1970年   10篇
  1969年   4篇
  1968年   2篇
  1966年   2篇
  1965年   5篇
  1963年   3篇
  1962年   4篇
  1954年   5篇
  1952年   8篇
  1951年   2篇
  1949年   4篇
  1939年   4篇
  1938年   2篇
  1924年   2篇
排序方式: 共有322条查询结果,搜索用时 31 毫秒
61.
In the Erzgebirge Crystalline Complex, eclogites occur in three different high pressure (HP) units (1, 2 and 3) recording contrasting pressure (P)–temperature (T) conditions. Eclogites from HP-unit 1 experienced peak metamorphic conditions in the coesite stability field at about 33 kbar/850 °C. Commonly, these eclogites from HP-unit 1 are all very similar, with an eclogitic peak assemblage of omphacite–garnet–coesite–K-feldspar, rarely accompanied by kyanite, and omphacites systematically deviating from a stoichiometric composition. In contrast, an eclogite recently found near Blumenau, is mineralogically and geochemically different from the typical eclogites of HP-unit 1. This unusual eclogite reveals the eclogitic equilibrium assemblage omphacite–garnet–coesite–phengite–phlogopite–kyanite, and yields metamorphic peak conditions of 870 °C and >29 kbar. There is clear textural evidence of the formation of phlogopite and kyanite under partial consumption of phengite and garnet. Moreover, the omphacite is stoichiometric and contains abundant exsolution lamellae, the thickest of which were identified as quartz by the electron microprobe. The finer lamellae were studied by transmission electron microscopy (TEM). Oligoclase was identified as an exsolution phase. Other lamellae proved to consist of K-white mica, also interpreted as exsolution. Prior to exsolution, the omphacite composition must have been cation-deficient, as that of the other, common HP-unit 1 eclogites. These non-stoichiometric compositions are ascribed to partial substitution by the Ca-Eskola pyroxene component, which calculates to an average of 8 mol% for omphacite in HP-unit 1 eclogites. According to experiments, this substitution becomes significant at P > 30 kbar. Exsolution of K-white mica may indicate hydroxyl defects in the original omphacite, also favoured by high pressure. Oligoclase and K-white mica exsolution from Ca-Eskola-rich clinopyroxene has not previously been reported. The omphacite has a disordered C2/c structure; and in just one case very small (a few tens of nanometres) antiphase domains, resulting from the C2/c to P2/n transformation, are present. These features may indicate a brief thermal history and rapid tectonic processes. Received: 4 January 1999 / Accepted: 20 April 2000  相似文献   
62.
This study addresses whether Raman spectra can be used to estimate the degree of accumulated radiation damage in monazite-(Ce) samples whose chemical composition was previously determined. Our results indicate that the degree of disorder in monazite–(Ce), as observed from increasing Raman band broadening, generally depends on both the structural state (i.e., radiation damage) and the chemical composition (i.e., incorporation of non-formula elements). The chemical effects were studied on synthetic orthophosphates grown using the Li-Mo flux method, and non radiation-damaged analogues of the naturally radiation-damaged monazite–(Ce) samples, produced by dry annealing. We found that the “chemical” Raman-band broadening of natural monazite–(Ce) can be predicted by the empirical formula, $$ {\hbox{FWHM}} {\hbox{[c}}{{\hbox{m}}^{ - {1}}}{]} = {3}{.95} + {26}{.66} \times {\hbox{(Th}} + {\hbox{U}} + {\hbox{Ca}} + {\hbox{Pb)}} {\hbox{[apfu]}} $$ where, FWHM = full width at half maximum of the main Raman band of monazite–(Ce) (i.e., the symmetric PO4 stretching near 970?cm?1), and (Th+U+Ca+Pb) = sum of the four elements in apfu (atoms per formula unit). Provided the chemical composition of a natural monazite–(Ce) is known, this “chemical band broadening” can be used to estimate the degree of structural radiation damage from the observed FWHM of the ν1(PO4) band of that particular sample using Raman spectroscopy. Our annealing studies on a wide range of monazite–(Ce) reference materials and other monazite–(Ce) samples confirmed that this mineral virtually never becomes highly radiation damaged. Potential advantages and the practical use of the proposed method in the Earth sciences are discussed.  相似文献   
63.
Redistribution of HFSE elements during rutile replacement by titanite   总被引:2,自引:0,他引:2  
Titanite growth at the expense of rutile during retrograde hydration of eclogite into amphibolite is a common phenomenon. We investigated an amphibolite sample from the Tromsø eclogite facies terrain in Northern Norway to gain insight into the trace element distribution between rutile and titanite during incomplete resorption of the rutile by titanite. Patchy compositional zoning of Al, Ti, and F in titanite relates to the presence of a fluid with variable Ti/Al and/or F during its growth. Laser ablation ICP–MS and electron microprobe data for high field strength elements (HFSE: Nb, Zr, Ta, and Hf) of rutile resorbed by titanite indicate a pronounced enrichment of these elements in the rim of a large single rutile crystal (~8 mm) and a systematic decrease towards uniform HFSE contents in the large core. HFSE contents of smaller rutile grains (~0.5 mm) and rutile inclusions (<100 μm) in the titanite overgrowth are similar or higher than in the rims of large rutile crystals. Element profiles from the rim inward demonstrate that HFSE enrichment in rutile is controlled by diffusion. HFSE ratios in diffusion-altered rutile show systematic variations compared with the uniform core composition of the large rutile. Modelling of Zr and Nb diffusion in rutile indicates that diffusion coefficients in rutile in fluid-dominated natural systems must be considerably higher than those determined experimentally at 1 bar in dry systems. Variations of HFSE contents in the newly formed titanite show no systematic spatial distribution. HFSE ratios in titanite and the rims of rutile are different, indicating different solid/fluid distribution coefficients in these minerals. Element fractionation by diffusion into the relict rutile and during fluid-mediated growth of new titanite could substantially change the HFSE budget of these minerals and could affect their use for geochemical tracing and other applications, such as Zr-based geothermobarometry.  相似文献   
64.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   

65.
66.
Noble-gas systematics show that Brachino is not a member of the SNC-group of meteorites. The whole-rock K-Ar gas retention age is (3.11 ± 0.07) AE as compared to the 1.3 AE solidification ages of SNCs; the content of radiogenic129 Xe* of (3.47 ±. 15) × 10?10 cm3 STP/g is about two orders of magnitude higher, and the129 Xe/132 Xe ratio (11.0), the ratio of radiogenic129 Xe* to fissiogenic136 Xef (300), and the ratio36 Ar/132 Xe in the trapped gases are about one order of magnitude higher than observed for SNCs. The same evidence argues strongly against any simple genetic relationship with eucrites. The noble-gas abundance pattern resembles closely that in silicate inclusions from the iron meteorites Campo del Cielo and Udei Station. Abundances of cosmic-ray produced3 He and21 Ne (5.7 and. 99 × 10?8 cm3 STP/g, resp.) indicate an exposure age of ~ 2.4 Ma. Irradiation conditions appear to have been perfectly normal except for an unaccountably low content of spallogenic 38Ar. Losses by diffusion of radiogenic4 He are severe; they must have occurred at or before the onset of the exposure of the meteoroid to the cosmic radiation.  相似文献   
67.
68.
Rock, soil, and plant (terrestrial moss, European mountain ash leaves, mountain birch leaves, bark and wood, and spruce needles and wood) samples, collected at 3 km intervals along a 120 km long transect (40 sites) cutting the city of Oslo, Norway, were analysed for their Pb concentration and Pb-isotope ratios. A general decrease in 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios, with a characteristic low variability in all plant materials and the plant-derived O-horizon of soil profiles, compared to rocks and mineral soils, is observed along the transect. It is demonstrated that minerogenic and biogenic sample materials belong to two different spheres, the lithosphere and biosphere, and that geochemical processes determining their chemical and isotopic compositions differ widely. Background variation for both sample materials needs to be established and documented at the continental and global scale before the anthropogenic influence on the geochemistry of the earth’s surface can be reliably estimated.  相似文献   
69.
Coastal research is structured here according to its main topics, and remote sensing systems are valued accordingto their usefulness for these different topics. Mainly, coastal research requires a high spatial resolution in combination with a high temporal resolution power. Therefore, satellite-borne systems are less suited than airborne systems. High altitude photography combines advantages of both systems, but substances may best be detected by non-photographic techniques.  相似文献   
70.
Craters in the 0.4 mm and larger size class were observed on six Apollo 12 whole rock surfaces (12017, 12021, 12038, 12047, 12051 and 12073). Craters on crystalline surfaces are characterized by a central, glass-lined cavity, a concentric zone of shock fractured, high albedo material and a concentric spallation area. The crater geometries observed are similar to craters produced on glasses and crystalline materials in the laboratory with projectile velocities exceeding 10 km/sec. The high projectile velocities required and the presence of a distinct demarcation line between cratered and uncratered surfaces on individual rocks indicate that most of the microcraters are produced by primary cosmic particles. These discrete impact events account for most of the erosion and fragmentation of lunar surface rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号