首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   9篇
  国内免费   1篇
测绘学   3篇
大气科学   14篇
地球物理   76篇
地质学   152篇
海洋学   25篇
天文学   46篇
综合类   1篇
自然地理   5篇
  2018年   4篇
  2017年   7篇
  2016年   5篇
  2014年   5篇
  2013年   12篇
  2012年   9篇
  2011年   7篇
  2010年   12篇
  2009年   14篇
  2008年   16篇
  2007年   10篇
  2006年   8篇
  2005年   6篇
  2004年   9篇
  2003年   3篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1992年   3篇
  1990年   7篇
  1989年   6篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1977年   4篇
  1976年   5篇
  1975年   3篇
  1973年   6篇
  1971年   3篇
  1970年   10篇
  1969年   4篇
  1968年   2篇
  1966年   2篇
  1965年   5篇
  1963年   3篇
  1962年   4篇
  1954年   5篇
  1952年   8篇
  1951年   2篇
  1949年   4篇
  1939年   4篇
  1938年   2篇
  1924年   2篇
排序方式: 共有322条查询结果,搜索用时 718 毫秒
161.
The Andes of northern Chile currently experience a phase of relief rejuvenation as indicated by valleys that are >1000 m dissected into pediplains. However, it has been unclear when this phase of relief enhancement started. This paper discusses the use of palaeomagnetic chronologies from four sections in the Taracapá-Region (northern Chile) to assess this age. The sections are located in distal and proximal positions. Sediment accumulation occurred between c. 22.5 and 8/7.5 Ma with a hiatus that possibly spans a time interval between c. 19.5 and 11 Ma. The magnetic polarity chronologies suggest a preferred age between 8.0 and 7.5 Ma for the time when relief growth started. In proximal positions, however, alternative correlations suggest an age of 8.5 Ma. In addition, the palaeomagnetic data reveal no rotation of the analysed strata, suggesting a minimum age of c. 22.5 Ma for the tectonic block rotation south of the Arica deflection.  相似文献   
162.
Abstract— A series of 59 impacts in the laboratory reduced a coherent 460 g piece of the L6 ordinary chondrite ALH 85017 to a coarse‐grained “regolith.” We then subjected the 125–250 μm fines from this sample to reverberation shock stresses of 14.5–67 GPa in order to delineate the melting behavior of porous, unconsolidated, chondritic asteroid surfaces during meteorite impact. The initial pore space (40–50%) was completely closed at 14.5 GPa and a dense aggregate of interlocking grains resulted. Grain‐boundary melting commenced at <27 GPa and ?50% of the total charge was molten at 67 GPa; this stress corresponds to typical asteroid impacts at ?5 km/sec. Melting of the entire sample most likely mandates >80 GPa, which is associated with impact velocities >8 km/sec. The Fe‐Ni and troilite clasts of the original meteorite melted with particular ease, forming immiscible melts that are finely disseminated throughout the silicate glass. These metal droplets are highly variable in size, extending to <100 nm and most likely to superparamagnetic domains; such opaques are also observed in the natural melt veins of ordinary chondrites. It follows that melting and dissemination of pre‐existing, Fe‐rich phases may substantially affect the optical properties of asteroidal surfaces. It seems unnecessary to invoke reduction of Fe2+ (or Fe3+) by sputtering or impact‐processes—in analogy to the lunar surface—to produce “space weathering” effects on S‐type asteroids. We note that HED meteorites contain ample FeO (comparable to that in lunar basalts) for reduction processes to take place, yet their probable parent object(s), Vesta and its collisional fragments, display substantially unweathered surfaces. Howardites, eucrites, and diogenites (HEDs), however, contain little native metal (typically <0.5%), in contrast to ordinary chondrites (commonly 10–15%) and their S‐type parent objects. These considerations suggest that the modal content of native metal and sulfides is more important for space weathering on asteroids than total FeO.  相似文献   
163.
In the Lainbach catchment, unconsolidated Pleistocene moraine sediments are widely distributed. Because of the great natural risk of floods, together with extreme loads of sediments, investigations of runoff production processes have been conducted in this area. At hillslope scale three test sites with different states of soil development and vegetation cover were instrumented with V‐shaped weirs, precipitation gauges and measurement devices for electrical conductivity (EC) of discharge water. The EC has been used as a geochemical tracer for hydrograph separation, since the statistical relationship between content of dissolved Ca2+, Mg2+ cations and EC is highly significant for different stages of runoff. This method allows hydrograph separation at high temporal resolution for both the rising and falling limb of the hydrograph. The following results of the investigations can be resumed. If relief conditions are similar, the effectiveness of runoff production decreases with an increasing density of vegetation cover. The runoff delivery ratio decreases as well as the peaks of runoff. In contrast, concentration times of hillslope catchments are equal, even if vegetation cover is of great density and soils are well developed. As a reason for the short reaction times, different runoff production processes have been detected. On bare ground, infiltration excess overland flow intensified by surface sealing processes is the main source for quick runoff. On hillslopes well covered by vegetation, translatory flow processes indicated by soil water with high solute contents force a rapid runoff reaction only a few minutes after rainfall has begun. It is to be assumed that translatory flow is a runoff production process typical for hillslopes covered by vegetation in a steep alpine relief. By means of the areal distribution of the topographic index, concentration of runoff production on a small part of the catchment has been demonstrated for hillslopes densely covered by vegetation. The investigations have shown that there is a lack of studies on runoff production processes in steep alpine relief, as well as a deficit of methods to quantify hydraulic properties of coarse‐grained soils with a wide grain size distribution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
164.
The pyroclastic deposits of the Minoan eruption (ca 3600 yr bp ) in Santorini contain abundant xenoliths. Most of these deposits are calcareous blocks of laminated‐botryoidal, stromatolite‐like buildups that formed in the shallow waters of the flooded pre‐Minoan caldera; they consist of (i) light laminae, of fibrous aragonite arranged perpendicular to layering, and (ii) dark laminae, with calcified filaments of probable biological origin. These microstructures are absent in the light laminae, suggesting a predominant inorganic precipitation of aragonite on substrates probably colonized by microbes. Internal cavities contain loose skeletal grains (molluscs, ostracods, foraminifera and diatoms) that comprise taxa typical of shallow marine and/or lagoon environments. Most of these forms are typical of warm water environments, although no typical taxa from hydrothermal vents have been observed. Past gasohydrothermal venting is recorded by the occurrence of barite, pyrolusite and pyrite traces. The most striking features of the stable isotopic data set are: (i) an overall wide range in δ13CPDB (0·16 to 12·97‰) with a narrower variation for δ18OPDB (?0·23 to 4·33‰); and (ii) a relatively uniform isotopic composition for the fibrous aragonite (δ13C = 12·40 ± 0·43‰ and δ18O = 2·42 ± 0·77‰, = 21). The δ13C and δ18O values from molluscs and ostracods display a covariant trend, which reflects a mixing between sea water and a fluid influenced by volcano‐hydrothermal activity. Accordingly, 87Sr/86Sr from the studied carbonates (0·708758 to 0·709011 in fibrous aragonite and 0·708920 to 0·708991 in molluscs) suggests that the aragonite buildups developed in sea water under the influence of a hydrothermal/volcanic source. Significant differences in trace elements have been detected between the fibrous aragonite and modern marine aragonite cements. The caldera water from which the fibrous aragonite crusts formed received an input from a volcano‐hydrothermal system, probably producing diffuse venting of volcanogenic CO2 gas and of a fluid enriched in Ca, Mn and Ba, and depleted in Mg and probably in Sr.  相似文献   
165.
Abstract

The problem of the removal of the degeneracy of the patterns of convective motion in a spherically symmetric fluid shell by the effects of rotation is considered. It is shown that the axisymmetric solution is preferred in sufficiently thick shells where the minimum Rayleigh number corresponds to degree l = 1 of the spherical harmonics. In all cases with l > 1 the solution described by sectional spherical harmonics Yl l (θ,φ) is preferred.  相似文献   
166.
ABSTRACT

This study presents an adaptation of the double-ring infiltrometer (DRI) device, which allows several infiltration experiments to be conducted at the same location. Hence, it becomes possible to use the DRI method to investigate infiltration behaviour under different initial soil moisture conditions. The main feature is the splitting of the inner ring into two parts. While the lower part remains in the soil throughout the investigation period, the upper part is attached to the lower one just before the infiltration experiment. This method was applied to eight test sites in an Alpine catchment, covering different land-use/cover types. The results demonstrated the applicability of the adapted system and showed correlations between total water infiltration and initial soil moisture conditions on pastures, independent of the underlying soil type. In contrast, no correlation was found at forest sites or wetlands. Thus, the study emphasizes the importance of paying special attention to the impact of initial soil moisture conditions on the infiltration—and consequently the runoff behaviour—at managed areas. Given the differences in the total infiltrated water of between 30 and 1306 mm, consideration of the interplay between initial soil moisture conditions, land-use/cover type, and soil properties in rainfall–runoff models is a prerequisite to predict runoff production accurately.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR not assigned  相似文献   
167.
Wildfires in the sub‐alpine belt of the Austrian Limestone Alps sometimes cause severe vegetation and soil destruction with increased danger of secondary natural hazards such as avalanches and debris flows. Some of the affected areas remain degraded to rocky slopes even decades after the fire, raising the question as to whether the ecosystems will ever be able to recover. The mean fire interval, the duration of recovery and the role of geomorphic processes for vegetation regeneration are so far unknown. These questions were tackled in a broad research approach including investigation of historical archives to determine the frequency of historical wildfires, mapping vegetation regeneration on 20 slopes of different post‐fire ages, and soil erosion measurements on two slopes. To date, > 450 historical wildfires have been located in the study area. The mean fire interval per square kilometre is c. 750 years, but can be as low as 200–500 years on south‐facing slopes. Vegetation regeneration takes an extremely long time under unfavourable conditions; the typical window of disturbance is between 50 and 500 years, which is far longer than in any other wildfire study known to us. Soil erosion constantly increases in the years after the fires and the elevated intensity can be maintained for decades. A two‐part vegetation regeneration model is proposed depending upon the degree of soil loss. In the case of moderate soil erosion, spreading grassland communities can slow down shrub re‐colonization. In contrast, after severe soil destruction the slopes may remain degraded for a century or longer, before rather rapid regeneration occurs. The reasons are not fully understood but are probably governed by geomorphic process intensity. The interdependence of vegetation regeneration and geomorphic processes is a paradigm of ecology–geomorphology interaction, and is a unique example of a very long‐lasting disturbance response caused by wildfire in a non‐resilient ecosystem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
168.
We establish the relationships between concentrations of inorganic suspended sediments (ISS) on light, nutrients, phytoplankton, and bacteria in three oligotrophic lakes (four sites) and we use these relationships to predict the impacts of increasing concentrations of ISS on the biomass and productivity of phytoplankton and bacteria in the lakes. Increased concentrations of ISS contributed little available nutrient to the lakes. The relationships between ISS and underwater light attenuation differed among lakes because of variation in sediment size‐structure, and composition. Only at the site with the highest ISS concentrations and a relatively deep mixing depth, were phytoplankton apparently light‐limited and, thus, predicted to decline with increased ISS concentrations. In contrast to previously published studies, bacterial abundance and production were not highly correlated to suspended sediment concentrations in these lakes. However, bacterial biomass, productivity, and specific productivity were more strongly correlated to phytoplankton production. As a result of light limitation and stimulation of bacterial production, increases in ISS concentrations are not predicted to significantly shift the metabolic balance in the planktonic ecosystem of three of the sites towards greater heterotrophy. Where light limits phytoplankton production, increases in ISS are predicted to reduce the productivity of both phytoplankton and bacteria by direct inhibition of phytoplankton production, again without a large shift towards greater importance of the microbial loop. By reducing phytoplankton production and inhibiting larger cladoceran grazers, we predict that high concentrations of ISS will reduce available energy and its flow up the food chain.  相似文献   
169.
170.
Summary Samples of metallurgical dusts and fly ashes from coal power plants and iron works in Upper Silesia as well as soil profiles in the close vicinity of these plants and in Ojcow National Park (ca. 25 km east of the industrial area) have been studied magnetically and mineralogically. The metallurgical dusts and fly ashes are highly enriched in ferromagnetic minerals. The topsoils from profiles collected near the plants have very high values of magnetic susceptibility while susceptibility in the fermentation and humic subhorizons in soil profiles from Ojcow National Park is considerably increased. The magnetic properties of the metallurgical dusts and fly ashes such as frequency dependence of susceptibility, saturation remanence or coercivity are similar to those observed in the top horizons of the soils. They are mostly related to the occurrence of large (multidomain) grains of non-stoichiometric magnetite ranging from 1 to 20 μm. The similarity of the magnetic particles in the soils is taken as evidence of an anthropogenic origin. They are responsible for the high soil susceptibilities in Upper Silesia and in adjacent areas. Some of the magnetic particles carry substantial quantitities of trace elements such as Pb, Ni, Zn and Cu. Field and laboratory susceptibility measurements can therefore be used as a simple and costeffective method of detecting the presence of heavy metals in the soils of this area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号