首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   4篇
测绘学   32篇
大气科学   18篇
地球物理   43篇
地质学   41篇
海洋学   16篇
天文学   37篇
综合类   1篇
自然地理   18篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   12篇
  2012年   4篇
  2011年   6篇
  2010年   6篇
  2009年   8篇
  2008年   10篇
  2007年   8篇
  2006年   8篇
  2005年   5篇
  2004年   9篇
  2003年   6篇
  2002年   7篇
  2001年   8篇
  2000年   9篇
  1998年   4篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   7篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1966年   2篇
  1963年   1篇
  1895年   1篇
排序方式: 共有206条查询结果,搜索用时 312 毫秒
101.
102.
103.
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210–300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas δ13C–CO2 values (−3 to −5‰) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ≤1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982–1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987–1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone).  相似文献   
104.
105.
We report the use of new apparatus for the direct determination of the activities of components in minerals and melts by the measurement of their intrinsic vapour pressures at high temperatures using a Knudsen-cell mass spectrometer combination. The activity coefficients of Fe, Ni and Co have been determined using this technique in binary and ternary Fe-Co-Ni alloys over the temperature range 1200–1650°C. The results show negative deviations from ideality in the Fe-Ni system and both positive and negative deviations in Fe-Co. Activity coefficients determined in the ternary system were used to calculate the compositions of Fe-Ni-Co alloys in equilibrium with a gas of chondritic composition and the results are consistent with the compositions of metallic particles in Ca, Al rich inclusions in chondritic meteorites.  相似文献   
106.
A latite dome in northwest Arizona contains a rare occurrence of primary SO4-rich scapolite phenocrysts. The total phenocryst assemblage consists of plagioclase (An20?An33), hornblende, biotite, and scapolite (Me68). Microphenocrysts include allanite and oxidized low-Ti magnetite. Electron microprobe analyses show that the scapolite contains about 1.74 wt.% S, which indicates an atomic S/(S + C) of 0.58. Although scapolite occurs in xenoliths in volcanic rocks and diatremes, as well as a metamorphic mineral in granulites, its occurrence as a primary igneous mineral is extremely rare.Ca-rich scapolite has been crystallized experimentally by others from melts with a wide range of SiO2, CaO, and Na2O contents, at temperatures above 825°C and pressures ranging from 3 to 15 kbar. Comparison of scapolite from this latite with synthetic scapolite crystallized from nepheline syenite melt suggests that the Arizona phenocrysts crystallized under conditions of 850 to 900°C, 3–6 kbar total pressure, and unusually high ?CO2 and ?SO2. The rarity of scapolite as a phenocryst mineral suggests that high partial pressures of CO2 and SO2 are rare in the magmatic environment.  相似文献   
107.
Zoned spinel of unusual composition and morphology has been found in massive pyrrhotite-chalcopyrite-pent-landite ore from the La Perouse layered gabbro intrusion in the Fairweather Range, southeastern Alaska. The spinel grains show continuous zoning from cores with up to 53 wt.% Cr2O3 to rims with less than 11 wt.% Cr2O3. Their composition is exceptional because they contain less than 0.32 wt.% MgO and less than 0.10 wt.% Al2O3 and TiO2. Also notable are the concentrations of MnO and V2O3, which reach 4.73 and 4.50 wt.%, respectively, in the cores. The spinel is thought to have crystallized at low oxygen fugacity and at temperatures above 900°C, directly from a sulfide melt that separated by immiscibility from the gabbroic parental magma.  相似文献   
108.
109.
An understanding of the evolution of cracks in concrete structures due to long term natural deformation is important to civil engineers, but quantitative measurements can be difficult to make. However, digital imaging offers a potential solution. This short paper illustrates the operational application of automated image processing techniques for accurate, multi-temporal crack measurements. The first part of this paper provides an overview of automatic feature extraction, essential for automatic crack detection. The latter part describes the methods developed for detecting and measuring cracks. Due to the long term nature of the application, operational results have yet to be finalised, although sample results are presented  相似文献   
110.
In situ AGAGE GC-MS measurements of methyl bromide (CH3Br) and methyl chloride (CH3Cl) at Mace Head, Ireland and Cape Grim, Tasmania (1998–2001) reveal a complex pattern of sources. At Mace Head both gases have well-defined seasonal cycles with similar average annual decreases of 3.0% yr−1 (CH3Br) and 2.6% yr−1 (CH3Cl), and mean northern hemisphere baseline mole fractions of 10.37 ± 0.05 ppt and 535.7 ± 2.2 ppt, respectively. We have used a Lagrangian dispersion model and local meteorological data to segregate the Mace Head observations into different source regions, and interpret the results in terms of the known sources and sinks of these two key halocarbons. At Cape Grim CH3Br and CH3Cl also show annual decreases in their baseline mixing ratios of 2.5% yr−1 and 1.5% yr−1, respectively. Mean baseline mole fractions were 7.94 ± 0.03 ppt (CH3Br) and 541.3 ± 1.1 ppt (CH3Cl). Although CH3Cl has astrong seasonal cycle there is no well-defined seasonal cycle in the Cape Grim CH3Br record. The fact that both gases are steadily decreasing in the atmosphere at both locations implies that a change has occurred which is affecting a common, major source of both gases (possibly biomass burning) and/or their major sink process (destruction by hydroxyl radical).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号