Leaf mechanical traits are important to understand how aquatic plants fracture and deform when subjected to abiotic (currents or waves) or biotic (herbivory attack) mechanical forces. The likely occurrence of variation during leaf ontogeny in these traits may thus have implications for hydrodynamic performance and vulnerability to herbivory damage, and may be associated with changes in morphologic and chemical traits. Seagrasses, marine flowering plants, consist of shoot bundles holding several leaves with different developmental stages, in which outer older leaves protect inner younger leaves. In this study we examined the long‐lived seagrass Posidonia oceanica to determine ontogenic variation in mechanical traits across leaf position within a shoot, representing different developmental stages. Moreover, we investigated whether or not the collection procedure (classical uprooted shoot versus non‐destructive shoot method: cutting the shoot without a portion of rhizome) and time span after collection influence mechanical measurements. Neither collection procedure nor time elapsed within 48 h of collection affected measurements of leaf biomechanical traits when seagrass shoots were kept moist in dark cool conditions. Ontogenic variation in mechanical traits in P. oceanica leaves over intermediate and adult developmental stages was observed: leaves weakened and lost stiffness with aging, while mid‐aged leaves (the longest and thickest ones) were able to withstand higher breaking forces. In addition, younger leaves had higher nitrogen content and lower fiber content than older leaves. The observed patterns may explain fine‐scale within‐shoot ecological processes of leaves at different developmental stages, such as leaf shedding and herbivory consumption in P. oceanica. 相似文献
Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833-1034 was born 2053 years ago from a supernova explosion, the BC 48 guest star observed in the Western Han (Early Han) Dynasty by ancient Chinese. Based on a detailed analysis of the Chinese ancient record of the BC 48 guest star and the new detected physical parameters of PSR J1833-1034, agreements on the visual position, age and distance between PSR J1833-1034 and the BC 48 guest star are obtained. The initial period P0 of PSR J1833-1034 is now derived from its historical and current observed data without any other extra assumption on P0 itself, except that the factor PP is a constant in its evolution until now. 相似文献
We analyse warps in the nearby edge-on spiral galaxies observed in the Spitzer /Infrared Array Camera (IRAC) 4.5-μm band. In our sample of 24 galaxies, we find evidence of warp in 14 galaxies. We estimate the observed onset radii for the warps in a subsample of 10 galaxies. The dark matter distribution in each of these galaxies are calculated using the mass distribution derived from the observed light distribution and the observed rotation curves. The theoretical predictions of the onset radii for the warps are then derived by applying a self-consistent linear response theory to the obtained mass models for six galaxies with rotation curves in the literature. By comparing the observed onset radii to the theoretical ones, we find that discs with constant thickness can not explain the observations; moderately flaring discs are needed. The required flaring is consistent with the observations. Our analysis shows that the onset of warp is not symmetric in our sample of galaxies. We define a new quantity called the onset-asymmetry index and study its dependence on galaxy properties. The onset asymmetries in warps tend to be larger in galaxies with smaller disc scalelengths. We also define and quantify the global asymmetry in the stellar light distribution, that we call the edge-on asymmetry in edge-on galaxies. It is shown that in most cases the onset asymmetry in warp is actually anticorrelated with the measured edge-on asymmetry in our sample of edge-on galaxies and this could plausibly indicate that the surrounding dark matter distribution is asymmetric. 相似文献
We explore the causes and predictability of extreme low minimum temperatures (Tmin) that occurred across northern and eastern Australia in September 2019. Historically, reduced Tmin is related to the occurrence of a positive Indian Ocean Dipole (IOD) and central Pacific El Niño. Positive IOD events tend to locate an anomalous anticyclone over the Great Australian Bight, therefore inducing cold advection across eastern Australia. Positive IOD and central Pacific El Niño also reduce cloud cover over northern and eastern Australia, thus enhancing radiative cooling at night-time. During September 2019, the IOD and central Pacific El Niño were strongly positive, and so the observed Tmin anomalies are well reconstructed based on their historical relationships with the IOD and central Pacific El Niño. This implies that September 2019 Tmin anomalies should have been predictable at least 1–2 months in advance. However, even at zero lead time the Bureau of Metereorolgy ACCESS-S1 seasonal prediction model failed to predict the anomalous anticyclone in the Bight and the cold anomalies in the east. Analysis of hindcasts for 1990–2012 indicates that the model's teleconnections from the IOD are systematically weaker than the observed, which likely stems from mean state biases in sea surface temperature and rainfall in the tropical Indian and western Pacific Oceans. Together with this weak IOD teleconnection, forecasts for earlier-than-observed onset of the negative Southern Annular Mode following the strong polar stratospheric warming that occurred in late August 2019 may have contributed to the Tmin forecast bust over Australia for September 2019.
Variations in the location and strength of convection in the Western Pacific Warm Pool (WPWP) have a profound impact on the
distribution and amount of global rainfall. Much of the variability in WPWP convection is attributed to variations in the
El Ni?o-Southern Oscillation, for which the long-term trends and forcing mechanisms remain poorly understood. Despite the
importance of WPWP convection to global climate change, we have very few paleohydrological reconstructions from the region.
Here we present a new paleolimnologic and paleohydrologic record spanning the past 1,400 years using a multi-proxy dataset
from Lake Logung, located in East Java, Indonesia that provides insights into centennial-scale trends in warm pool hydrology.
Organic matter δ13C data indicate that East Java became wetter over the last millennium until ca. 1800 Common Era (CE), consistent with evidence
for the southward migration of the Intertropical Convergence Zone (ITCZ) during this time. Superimposed on this long-term
trend are four decade- to century-scale droughts, inferred from organic matter δ13C and calcite abundance data. They are centered at 1030, 1550, 1830, and 1996 CE. The three more recent droughts correlate
with hydrologic anomalies documented in other proxy records from the WPWP region on both sides of the equator, and the two
most recent droughts correlate in time with historically documented periods of multiple, intense El Ni?o events. Thus, our
record provides strong evidence that century-scale hydrologic variability in this region relates to changes in the Walker
Circulation. Human activity within the lake catchment is apparent since 1860 CE. 相似文献