首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5580篇
  免费   568篇
  国内免费   159篇
测绘学   237篇
大气科学   617篇
地球物理   2019篇
地质学   2273篇
海洋学   278篇
天文学   436篇
综合类   187篇
自然地理   260篇
  2022年   6篇
  2021年   17篇
  2020年   10篇
  2019年   13篇
  2018年   439篇
  2017年   378篇
  2016年   262篇
  2015年   164篇
  2014年   126篇
  2013年   131篇
  2012年   657篇
  2011年   441篇
  2010年   134篇
  2009年   148篇
  2008年   130篇
  2007年   122篇
  2006年   135篇
  2005年   836篇
  2004年   886篇
  2003年   658篇
  2002年   186篇
  2001年   82篇
  2000年   53篇
  1999年   20篇
  1998年   10篇
  1997年   22篇
  1996年   16篇
  1995年   5篇
  1994年   6篇
  1993年   7篇
  1991年   12篇
  1990年   13篇
  1989年   8篇
  1987年   5篇
  1986年   5篇
  1985年   11篇
  1984年   15篇
  1983年   7篇
  1982年   5篇
  1980年   14篇
  1977年   5篇
  1976年   8篇
  1975年   12篇
  1974年   5篇
  1973年   5篇
  1971年   5篇
  1970年   4篇
  1968年   4篇
  1967年   4篇
  1962年   5篇
排序方式: 共有6307条查询结果,搜索用时 428 毫秒
61.
The artificial tracer sulphur hexafluoride (SF6) has been used to study the density-driven deep water exchange between two sill-separated basins of Lake Lucerne, Gersauersee and Urnersee. The sources of the density gradients between the two basins are (1) salinity differences between the major inlets due to the different geology of their drainage areas, and (2) temperature differences due to spatial variation of wind forcing. Wind speeds are generally larger in Urnersee, especially in spring during the so-called Föhn events, when winds blow from the south. In contrast, Gersauersee is protected form these winds. In spring 1989, a total of 630 g of SF6 was released at 80 to 120 m depth in the small Treib Basin located between Urnersee and Gersauersee. During about 100 days the distribution of SF6 in the lake was determined by gaschromatography. Two models are used to quantify the exchange flow, (1) a one-box mass balance model for SF6 in the deep part of Treib Basin, and (2) a one-dimensional diffusion/advection model describing the temporal and vertical temperature variation in Urnersee. According to the first model, the flow into the deep hypolimnion of Urnersee, decreases from 21·106 m3·d?1 at the end of March to about 8·106 m3·d?1 in late April. The second model yields similar flow rates. The decrease of the flow rate during spring, confirmed by both approaches, is consistent (1) with the decreasing strength of the density gradient above the sill during spring and early summer, and (2) with hydrographic information collected in Lake Lucerne during other years.  相似文献   
62.
Simulation of multigaussian stochastic fields can be made after a Karhunen-Loéve expansion of a given covariance function. This method is also called simulation by Empirical Orthogonal Functions. The simulations are made by drawing stochastic coefficients from a random generator. These numbers are multiplied with eigenfunctions and eigenvalues derived from the predefined covariance model. The number of eigenfunctions necessary to reproduce the stochastic process within a predefined variance error, turns out to be a cardinal question. Some ordinary analytical covariance functions are used to evaluate how quickly the series of eigenfunctions can be truncated. This analysis demonstrates extremely quick convergence to 99.5% of total variance for the 2nd order exponential (‘gaussian’) covariance function, while the opposite is true for the 1st order exponential covariance function. Due to these convergence characteristics, the Karhunen-Loéve method is most suitable for simulating smooth fields with ‘gaussian’ shaped covariance functions. Practical applications of Karhunen-Loéve simulations can be improved by spatial interpolation of the eigenfunctions. In this paper, we suggest interpolation by kriging and limits for reproduction of the predefined covariance functions are evaluated.  相似文献   
63.
64.
We study the importance of the zones of weakness and the pattern of downgoing flow in steady-state models of subducting lithosphere, which interacts mechanically and thermally with the ambient mantle. The non-linear system of governing equations consists of (i) the momentum equation in stream function formulation and (ii) the steady-state heat transfer equation including conduction and advection of heat and dissipation. A finite element method has been applied to this system. We consider the viscosity to be a non-linear function of both the temperature and the stream function. In steady-state two-dimensional (2D) flow, the stream function isolines follow material trajectories. They are used to follow the top of the subducting slab, which because of its possible increase in water content, is assumed to have a lower viscosity. The zone of weakness has been thus obtained in the self-consistent fashion since the stream function as well as the temperature are the output from our modeling and no a priori assumptions about the shape of the bending lithosphere are taken into account. It was shown that several orders decrease of viscosity in the zone of weakness is required to obtain the dip angle of about 45°. If the decrease of viscosity is not sufficient enough, the subducted slab either sinks almost vertically or does not exhibit a plate-like behavior. We have also demonstrated that shear heating can unrealistically increase at the zone of weakness for fast subductions if decrease of viscosity is underestimated.  相似文献   
65.
The phase relations of quaternary systems are generally represented by projections onto ternary compositional planes. Such projections often obscure relationships that would only be evident in a three-dimensional tetrahedral plot. The tetrahedral plot requires that compositions of the minerals and melts be transformed into Cartesian coordinates. It is shown here how this transformation is carried out. The application is demonstrated by tetrahedral plots of experimental melt compositions of partially molten lherzolite. Furthermore, the plot can be used to evaluate whether or not a particular basaltic composition represents a primary melt. The methods are applicable to any four-component system.  相似文献   
66.
The mandible of Homo heidelbergensis was found 1907 in the sand pit Grafenrain at Mauer in coarse fluvial sands 24 m below the surface, deposited in a former course of the Neckar River. These ‘Mauer sands’ are overlain by a series of glacial-climate loess deposits with intercalated interglacial palaeosols, which can be correlated with Quaternary climate history, thus indicating an early Middle Pleistocene age for H. heidelbergensis. The ‘Mauer sands’ are famous for their rather rich mammal fauna, which clearly indicates interglacial climate conditions. The faunal evidence – in particular the micromammals – place the ‘Mauer sands’ into MIS 15 or MIS 13 although most stratigraphic arguments favour correlation to MIS 15 and therefore to an age of ca 600 ka.  相似文献   
67.
We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = ?0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.  相似文献   
68.
69.
Emissions of biogenic volatile organic compounds (BVOC) were measured using a relaxed eddy accumulation (REA) technique on an above-canopy tower in a temperate forest (Changbai Mountain, Jilin province, China) during the 2010 and 2011 summer seasons. Solar global radiation and photosynthetically active radiation (PAR) were also measured. Based on PAR energy dynamic balance, an empirical BVOC emission and PAR transfer model was developed that includes the processes of BVOC emissions and PAR transfer above the canopy level, including PAR absorption and consumption, and scattering by gases, liquids, and particles (GLPs). Simulated emissions of isoprene and monoterpenes were in agreement with observations. The averages of the relative estimator biases for the flux were 39.3 % for isoprene, and 27.1 % for monoterpenes in the 2010 and 2011 growing seasons, with NMSE (normalized mean square error) values of 0.133 and 0.101, respectively. The observed and simulated mean diurnal variations of isoprene and monoterpenes in the 2010 and 2011 growing seasons were evaluated for the validation of the empirical model. Under observed atmospheric conditions, the sensitivity analysis showed that emissions of isoprene and monoterpenes were more sensitive to changes in PAR than to water vapor content or to the magnitude of the scattering factor. The emissions of isoprene and monoterpenes in the 2010 and 2011 growing seasons (from June to September) were estimated using this empirical model along with hourly observational data, with mean hourly emissions of 1.71 and 1.55 mg m?2 h?1 for isoprene, and 0.48 and 0.47 mg m?2 h?1 for monoterpenes in 2010 and 2011, respectively. As formaldehyde (HCHO) is considered as the main oxidation product of isoprene and monoterpenes, it is necessary to investigate the link between HCHO and BVOC emissions. GOME-2 HCHO vertical column densities (VCDs) can be used to estimate BVOC emission fluxes in the Changbai Mountain temperate forest.  相似文献   
70.
During the onset of caldera cluster volcanism at a new location in the Snake River Plain (SRP), there is an increase in basalt fluxing into the crust and diverse silicic volcanic products are generated. The SRP contains abundant and compositionally diverse hot, dry, and often low-δ18O silicic volcanic rocks produced through time during the formation of individual caldera clusters, but more H2O-rich eruptive products are rare. We report analyses of quartz-hosted melt inclusions from pumice clasts from the upper and lower Arbon Valley Tuff (AVT) to gain insight into the initiation of caldera cluster volcanism. The AVT, a voluminous, caldera-forming rhyolite, represents the commencement of volcanism (10.44 Ma) at the Picabo volcanic field of the Yellowstone hotspot track. This is a normal δ18O rhyolite consisting of early and late erupted members (lower and upper AVT, respectively) with extremely radiogenic Sr isotopes and unradiogenic Nd isotopes, requiring that ~50 % of the mass of these elements is derived from melts of Archean upper crust. Our data reveal distinctive features of the early erupted lower AVT melt including: variable F concentrations up to 1.4 wt%, homogenous and low Cl concentrations (~0.08 wt%), H2O contents ranging from 2.3 to 6.4 wt%, CO2 contents ranging from 79 to 410 ppm, and enrichment of incompatible elements compared to the late erupted AVT, subsequent Picabo rhyolites, SRP rhyolites, and melt inclusions from other metaluminous rhyolites (e.g., Bishop Tuff, Mesa Falls Tuff). We couple melt inclusion data with Ti measurements and cathodoluminescence (CL) imaging of the host quartz phenocrysts to elucidate the petrogenetic evolution of the AVT rhyolitic magma. We observe complex and multistage CL zoning patterns, the most critical being multiple truncations indicative of several dissolution–reprecipitation episodes with bright CL cores (higher Ti) and occasional bright CL rims (higher Ti). We interpret the high H2O, F, F/Cl, and incompatible trace element concentrations in the context of a model involving melting of Archean crust and mixing of the crustal melt with basaltic differentiates, followed by multiple stages of fractional crystallization, remelting, and melt extraction. This multistage process, which we refer to as distillation, is further supported by the complex CL zoning patterns in quartz. We interpret new Δ18O(Qz-Mt) isotope measurements, demonstrating a 0.4 ‰ or ~180 °C temperature difference, and strong Sr isotopic and chemical differences between the upper and lower AVT to represent two separate eruptions. Similarities between the AVT and the first caldera-forming eruptions of other caldera clusters in the SRP (Yellowstone, Heise and Bruneau Jarbidge) suggest that the more evolved, lower-temperature, more H2O-rich rhyolites of the SRP are important in the initiation of a caldera cluster during the onset of plume impingement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号