首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   615篇
  免费   17篇
测绘学   28篇
大气科学   67篇
地球物理   139篇
地质学   178篇
海洋学   55篇
天文学   91篇
综合类   2篇
自然地理   72篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   12篇
  2017年   12篇
  2016年   23篇
  2015年   8篇
  2014年   17篇
  2013年   31篇
  2012年   27篇
  2011年   24篇
  2010年   27篇
  2009年   25篇
  2008年   23篇
  2007年   19篇
  2006年   19篇
  2005年   18篇
  2004年   12篇
  2003年   14篇
  2002年   19篇
  2001年   13篇
  2000年   19篇
  1999年   11篇
  1998年   7篇
  1997年   11篇
  1996年   11篇
  1995年   10篇
  1994年   8篇
  1993年   11篇
  1992年   8篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   9篇
  1987年   9篇
  1986年   8篇
  1985年   13篇
  1984年   10篇
  1983年   13篇
  1982年   13篇
  1981年   11篇
  1980年   16篇
  1979年   6篇
  1978年   10篇
  1977年   10篇
  1976年   7篇
  1975年   7篇
  1973年   4篇
  1969年   2篇
  1961年   2篇
排序方式: 共有632条查询结果,搜索用时 15 毫秒
541.
A major assumption of the Empirical Transport Model (ETM), widely adopted by both electric utilities and regulatory agencies for estimating the effects of entrainment mortality on fish populations in estuaries, is that the fraction of ichthyoplankton entrained varies only in response to changes in water withdrawals, not to changes in freshwater flow. We evaluated this assumption using a particle-tracking model to estimmate the probability of entrainment at power plants on the Hudson River during low and high freshwater flow periods and comparing those probabilities with estimates calculated from the ETM. We found that freshwater flow had a profound effect on the probability of entrainment. Both the number of river regions from which particles were entrained and the probabilities of entrainment for particles in those river regions differed between low-flow and high-flow periods. During high flow, particles spent less time in the grid box next to the intakes, reducing the probability of entrainment for particles released in the river region of each power plant and the average probability of entrainment across all regions at three power plants. The reduced probability of entrainment for particles released in the river regions of two power plants was offset by higher entrainment for particles upriver of these power plants. Although the average probabilities of entrainment across all river regions estimated with the particle-tracking model and the ETM were relatively similar for some power plants at high flow, low flow, or both, the probabilities for each river region differed considerably between the models. The number of river regions from which particles were entrained using the ETM was consistently undersestimated, resulting in probabilities for regions where entrainment occurred that were biased high compared with the particle-tracking model.  相似文献   
542.
Another explorative study of the use of factor analysis in meteorite geochemistry has been made. Forty-two major and trace elements were sought from analyses of 80 stony meteorites in recent articles. Incomplete data reduced the matrix to 30 elements in 55 stones. Missing data were substituted by mean values in the groups CC, (E+H+L+LL) and ACH (13, 28, 14 individuals, respectively): the effect of these substitutions was tested empirically. R-mode analysis with varimax rotation was carried out on these three sub-sets and on the whole set: interpretation focused on factor loadings and scores. Results on the three sub-sets gave little information of geochemical value, although the largest achondrite factor (lithophile elements) permits discrimination of eucrites, aubrites, diogenites and howardites. Analysis of all 55 meteorites showed the variance to be dominated by 1, a refractory-lithophile(Al, Mg, Ca, Zr, Sc, U, Th, La, Eu, Yb) factor, and 2, a volatile-chalcophile (Zn, Te, Cd, Bi, Tl) factor. Factor (1) scores will discriminate chondrites from achondrites: factor (2) scores delineate the compositional trend CC1, CC2, CC3, (E+H+L+LL) except for enstatite chondrites Indarch, Abee which fall with CC1. Further progress would need metal, sulphide and other mineral percentages for each meteorite.  相似文献   
543.
Wildfires can impact streamflow by modifying net precipitation, infiltration, evapotranspiration, snowmelt, and hillslope run‐off pathways. Regional differences in fire trends and postwildfire streamflow responses across the conterminous United States have spurred concerns about the impact on streamflow in forests that serve as water resource areas. This is notably the case for the Western United States, where fire activity and burn severity have increased in conjunction with climate change and increased forest density due to human fire suppression. In this review, we discuss the effects of wildfire on hydrological processes with a special focus on regional differences in postwildfire streamflow responses in forests. Postwildfire peak flows and annual water yields are generally higher in regions with a Mediterranean or semi‐arid climate (Southern California and the Southwest) compared to the highlands (Rocky Mountains and the Pacific Northwest), where fire‐induced changes in hydraulic connectivity along the hillslope results in the delivery of more water, more rapidly to streams. No clear streamflow response patterns have been identified in the humid subtropical Southeastern United States, where most fires are prescribed fires with a low burn severity, and more research is needed in that region. Improved assessment of postwildfire streamflow relies on quantitative spatial knowledge of landscape variables such as prestorm soil moisture, burn severity and correlations with soil surface sealing, water repellency, and ash deposition. The latest studies furthermore emphasize that understanding the effects of hydrological processes on postwildfire dynamic hydraulic connectivity, notably at the hillslope and watershed scales, and the relationship between overlapping disturbances including those other than wildfire is necessary for the development of risk assessment tools.  相似文献   
544.
First results of a multi-disciplinary hyporheic monitoring study are presented from the newly established Steinlach Test Site in Southern Germany. The site is located in a bend of the River Steinlach (mean discharge of 1.8 m³/s) underlain by an alluvial sandy gravel aquifer connected to the stream. The overall objective is a better understanding of hyporheic exchange processes at the site and their interrelations with microbial community dynamics and biochemical reactions at the stream–groundwater interface. The present paper focuses on the distribution of lateral hyporheic exchange fluxes and their associated travel times at the Steinlach Test Site. Water level dynamics in various piezometers correspond to the different domains of hydraulic conductivity in the shallow aquifer and confirms hyporheic exchange of infiltrated stream water across the test site. Hydrochemical compositions as well as increased damping of continuous time series of electrical conductivity (EC) and temperature at the respective piezometers confirmed the inferred distribution of hyporheic flowpaths. Mean travel times ranging from 0.5 days close to the stream to more than 8 days in the upstream part of the test site could be estimated from deconvolution of EC and δ18O–H2O data. The travel times agree well with the presumed flowpaths. Mg/Ca ratios as well as model fits to the EC and δ18O data indicate the presence of an additional water component in the western part of the test site which most likely consists of hillslope water or groundwater. Based on the mean travel times, the total lateral hyporheic exchange flux at the site was estimated to be of the order of 1–2 L/s.  相似文献   
545.
We apply an integrated hydrology‐stream temperature modeling system, DHSVM‐RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt‐dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub‐basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
546.
A detailed study of the quasi-periodical post-flare variations on November 6, 1980 in X-rays, UV lines, microwaves, and metric waves confirms that these variations were predominantly thermal phenomena and occurred solely in the corona. Only the short-lived impulsive components that preceded all or most of the individual variations were of non-thermal character and penetrated down to the transition layer. The chromosphere (in Hα) did not participate in any part of these events, in contrast to a flare that appeared at the same place a few hours later. However, the X-ray emission of these variations was so strong that the transition layer and the chromosphere definitely should have been enhanced through heat conduction along the magnetic field lines. The expected heat flux at the top of the chromosphere coming from some of these coronal brightenings was 60–80% of the flux expected in the flare at 17:26 which gave rise to a 2B flare in Hα (Figure 8). Therefore, we suggest that the variations were produced in a coronal plasmoid with closed field lines completely detached from the lower atmospheric layers (Figure 9b). We also give reasons why such a detached plasmoid can be expected to be formded in the very late phase (some 4–5 hr after the onset) of a major two-ribbon flare.  相似文献   
547.
548.
In this paper, we describe a high-frequency (HF) radar capable of multifrequency operation over the HF band for dual-use application to ship classification and mapping ocean current shear and vector winds. The radar is based on a digital transceiver peripheral component interconnect (PCI) card family that supports antenna arrays of four to 32 elements with a single computer, with larger arrays possible using multiple computers and receiver cards. The radar makes use of broadband loop antennas for receive elements, and a number of different possibilities for transmit antennas, depending on the operating bandwidth desired. An option exists in the choice of monostatic or multistatic operation, the latter providing the ability to use several transmit sites, with all radar echo signal reception and processing conducted at a single master receiver site. As applications for such a multifrequency radar capability, we show measurement and modeling examples of multiple frequency HF radar cross section (RCS) of ships as an approach to ship target classification. Results of using 32 radar frequencies to measure the fine structure in ocean current vertical shear are also shown, providing evidence of one edge of a 1-3-m deep uniform flow masked at the surface by wind-driven current shear in a different direction. Other applications of current-shear measurements, such as vector wind mapping and volumetric current estimation in coastal waters, are also discussed  相似文献   
549.
550.
Intertidal creeks are shallow, photic ecosystems that potentially serve as sources of prey for many predators within estuaries. In a previous study, the link between nekton community structure and hydrogeomorphological variables for eight intertidal creeks was assessed for North Inlet estuary, South Carolina. Herein, we advance their findings through ecological network analysis of foodweb structure within two creeks and infer nekton trophic relationships to geomorphology and potential influences of hydrological condition and change. A summer network of a shallow, wide creek demonstrated greater carbon recycling, trophic efficiency and flow through consumers than that of a deep, narrow creek representing the same period. We infer greater export of nekton carbon from the former creek. These results were supported by analyses of nekton effective trophic levels and guilds across the eight creeks. Shallow, wide intertidal creeks appear to provide both physical and foodweb attributes that promote good nekton habitat relative to deeper and narrower creeks. Human alterations to flow regimes and sea-level rise have the ability to affect geomorphology of individual creeks and the landscape as a whole. These changes in turn have the potential to alter food webs of intertidal creeks and their ability to serve as sources of food for the larger estuary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号