首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   6篇
测绘学   4篇
地球物理   14篇
地质学   62篇
海洋学   13篇
天文学   34篇
自然地理   7篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   8篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   8篇
  2010年   2篇
  2009年   10篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
  1957年   1篇
排序方式: 共有134条查询结果,搜索用时 0 毫秒
131.
Uncertainty quantification for geomechanical and reservoir predictions is in general a computationally intensive problem, especially if a direct Monte Carlo approach with large numbers of full-physics simulations is used. A common solution to this problem, well-known for the fluid flow simulations, is the adoption of surrogate modeling approximating the physical behavior with respect to variations in uncertain parameters. The objective of this work is the quantification of such uncertainty both within geomechanical predictions and fluid-flow predictions using a specific surrogate modeling technique, which is based on a functional approach. The methodology realizes an approximation of full-physics simulated outputs that are varying in time and space when uncertainty parameters are changed, particularly important for the prediction of uncertainty in vertical displacement resulting from geomechanical modeling. The developed methodology has been applied both to a subsidence uncertainty quantification example and to a real reservoir forecast risk assessment. The surrogate quality obtained with these applications confirms that the proposed method makes it possible to perform reliable time–space varying dependent risk assessment with a low computational cost, provided the uncertainty space is low-dimensional.  相似文献   
132.
In this paper we present an extension of the ensemble Kalman filter (EnKF) specifically designed for multimodal systems. EnKF data assimilation scheme is less accurate when it is used to approximate systems with multimodal distribution such as reservoir facies models. The algorithm is based on the assumption that both prior and posterior distribution can be approximated by Gaussian mixture and it is validated by the introduction of the concept of finite ensemble representation. The effectiveness of the approach is shown with two applications. The first example is based on Lorenz model. In the second example, the proposed methodology combined with a localization technique is used to update a 2D reservoir facies models. Both applications give evidence of an improved performance of the proposed method respect to the EnKF.  相似文献   
133.
We report a FTIR (Fourier transform infrared) study of a set of cordierite samples from different occurrence and with different H2O/CO2 content. The specimens were fully characterized by a combination of techniques including optical microscopy, single-crystal X-ray diffraction, EMPA (electron microprobe analysis), SIMS (secondary ion mass spectrometry), and FTIR spectroscopy. All cordierites are orthorhombic Ccmm. According to the EMPA data, the Si/Al ratio is always close to 5:4; X Mg ranges from 76.31 to 96.63, and additional octahedral constituents occur in very small amounts. Extraframework K and Ca are negligible, while Na reaches the values up to 0.84 apfu. SIMS shows H2O up to 1.52 and CO2 up to 1.11 wt%. Optically transparent single crystals were oriented using the spindle stage and examined by FTIR micro-spectroscopy under polarized light. On the basis of the polarizing behaviour, the observed bands were assigned to water molecules in two different orientations and to CO2 molecules in the structural channels. The IR spectra also show the presence of small amounts of CO in the samples. Refined integrated molar absorption coefficients were calibrated for the quantitative microanalysis of both H2O and CO2 in cordierite based on single-crystal polarized-light FTIR spectroscopy. For H2O the integrated molar coefficients for type I and type II water molecules (ν3 modes) were calculated separately and are [I]ε?=?5,200?±?700?l?mol?1?cm?2 and [II]ε?=?13,000?±?3,000?l?mol?1?cm?2, respectively. For CO2 the integrated coefficient is $ \varepsilon_{{{\text{CO}}_{ 2} }} $ ?=?19,000?±?2,000?l?mol?1?cm?2.  相似文献   
134.
This paper presents a morphological and hydrogeological reconstruction of the Murcia Valley at the location of the great Roman stadium Circus Maximus in Rome. We reconstruct a valley segment using ERT (electrical resistivity tomography) and geoarchaeological drilling data that identified three main layers. The basal layer, with high resistivity values and convex shapes, is correlated to alluvial gravel and lithified silt‐clay sediments. The middle layer shows low‐to‐medium resistivity values extending to concavities between the basal convex shapes. The very low resistivity values of this middle layer characterize elliptical to circular morphologies and have been ascribed to the presence of water‐saturated clay‐silt and peaty sediments. The surface layer is characterized by widespread lateral inhomogeneity interpreted as anthropogenic fill. The data indicate a pre‐Roman anastomosed alluvial plain subsequently modified by human intervention. In an effort to reclaim the valley for construction of the Circus, the Romans utilized the natural topography and created a central embankment, later becoming the Spina, by filling depressions with sand taken from adjacent bars. Our study contributes to (1) knowledge of the pre‐Roman landscape, (2) understanding anthropogenic modification of the Murcia Valley flood plain, and (3) archaeological interpretation of the monument.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号