首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   6篇
测绘学   4篇
地球物理   14篇
地质学   62篇
海洋学   13篇
天文学   34篇
自然地理   7篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   8篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   8篇
  2010年   2篇
  2009年   10篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
  1957年   1篇
排序方式: 共有134条查询结果,搜索用时 140 毫秒
11.
12.
The thermal dehydration process of fibroferrite, FeOH(SO4)·5H2O, a secondary iron-bearing hydrous sulfate, was investigated by in situ high-temperature synchrotron X-ray powder diffraction (HT-XRPD), in situ high-temperature Fourier transform infrared spectroscopy (HT-FTIR) and thermal analysis (TGA-DTA) combined with evolved gas mass spectrometry. The data analysis allowed the determination of the stability fields and the reaction paths for this mineral as well as characterization of its high-temperature products. Five main endothermic peaks are observed in the DTA curve collected from room T up to 800 °C. Mass spectrometry of gases evolved during thermogravimetric analysis confirms that the first four mass loss steps are due to water emission, while the fifth is due to a dehydroxylation process; the final step is due to the decomposition of the remaining sulfate ion. The temperature behavior of the different phases occurring during the heating process was analyzed, and the induced structural changes are discussed. In particular, the crystal structure of a new phase, FeOH(SO4)·4H2O, appearing at about 80 °C due to release of one interstitial H2O molecule, was solved by ab initio real-space and reciprocal-space methods. This study contributes to further understanding of the dehydration mechanism and thermal stability of secondary sulfate minerals.  相似文献   
13.
The behaviour of two silicates (albite and olivine) toward aqueous dissolution has been investigated with emphasis to two aspects: (1) similarities and differences with silicate glasses; and (2) influence of ion bombardment which transforms the initially crystalline structure to a glass-like one. The occurrence on leached materials of hydrated layers enriched with metallic elements is checked by using high-energy ion beam analytical techniques.

It is shown that for both amorphous and crystalline silicates, dissolution involves competing processes responsible for either hydrated-layer generation (hydration by ion exchange and/or water permeation), or its destruction (hydrolysis of siloxane bonds and detachment of silica units). At moderate temperature ( 100°C), the latter processes dominate for crystalline silicates and the resulting dissolution is congruent. However, these silicates tend to behave like glasses upon ion bombardment above a critical dose. At higher temperature (> 200°C), hydration is markedly enhanced and thick altered layers are generated even on undamaged minerals such as albite and orthoclase, where alkali cations are easily exchangeable.  相似文献   

14.
Single-crystal X-ray structure refinement of natural olivines equilibrated at high temperature under controlled oxygen fugacity (f O2) conditions, coupled with a structure-energy model were used to establish the influence of T, f O2 and bulk chemistry on intracrystalline disorder.The results are: 1) The k D (k D = [(Fe M1·Mg M2)/(Fe M2·Mg M1)]) factor describing site population on M1, M2 polyhedra increases from values lower than 1 at T below 400–600° C (depending on composition) to values higher than 1 at higher temperature. 2) The increase of k D with T is quite regular. 3) At constant temperature and pressure, k D increases with increasing fayalite content in the mixture; 4) Contrary to previous observations (Will and Nover 1979; Nover and Will 1981) varying f O2, within the stability range of the substance, has a negligible influence on intracrystalline disorder. 5) As ancillary results, the model confirms the defect scheme of Nakamura and Schmalzried (1983) for the investigated solids. Moreover, it shows that cationic vacancies are always created on M 1 site at the expense of Mg ions, while trivalent iron is always stabilized on M2 site. This explains the marked anisotropies observed in Fe-Mg interdiffusion (Buening and Busek 1973; Misener 1974; Schock et al. 1989).  相似文献   
15.
Castagnoli  G. Cini  Bonino  G.  Della Monica  P.  Taricco  C.  Bernasconi  S.M. 《Solar physics》1999,188(1):191-202
In this paper we present the 18O profile of Globigerinoides ruber measured in the GT90/3 shallow water Ionian sea core, dated with high precision. The 18O profile covers the period 1200–1900 AD, with a resolution of 3.87 years. This long record of 700 years of 18O allows us to identify the imprint of the solar cycle in a climatic record. In fact, the spectral analysis of the time series performed with different methods shows a dominant periodicity of about 11 years with an amplitude of 0.07. The signal is in opposition to the sunspot number cycle. This component is identified at a high significance level by Monte Carlo Singular Spectrum Analysis (MC-SSA).  相似文献   
16.
This letter describes recent advances in modeling forest emissivity at L-band. The formulation is based on a previously developed discrete model and includes a new representation of forest litter. Comparisons with multitemporal radiometric data collected in the framework of the ldquoBray 2004rdquo experiment, which was carried out within Les Landes forest, are shown and discussed. Input variables are given by using detailed ground measurements. In general, the model reproduces both absolute values and temporal variations of measured brightness temperature. The contribution of the litter to overall emission was found to be important.  相似文献   
17.
Extensive photometric and spectroscopic observations of SN 1994aj until 540 d after maximum light have been obtained. The photometry around maximum suggests that the SN belongs to the Type II Linear class, with a peak absolute magnitude of M V∼−17.8 (assuming H 0=75 km s−1 Mpc−1). The spectra of SN 1994aj were unusual, with the presence of a narrow line with a P Cygni profile on top of the broad Balmer line emission. This narrow feature is attributed to the presence of a dense superwind surrounding the SN. At 100–120 d after maximum light the SN ejecta start to interact with this circumstellar material. The SN luminosity decline rates slowed down [γ R =0.46 mag (100 d)−1], becoming less steep than the average late luminosity decline of normal SN II [∼1 mag (100 d)−1]. This dense ( ˙M / u W∼1015 g cm−1) wind was confined to a short distance from the progenitor ( R out=∼5×1016 cm), and results from a very strong mass-loss episode ( ˙M =10−3 M⊙ yr−1), which terminated shortly before explosion (∼5–10 yr).  相似文献   
18.
19.
We present here some initial results from the ongoing XMM-Newton bright serendipitous survey. The survey is aimed at selecting and spectroscopically identifying a large and statistically representative sample of bright (f x ≳ 7× 10−14 c.g.s) serendipitous X-ray sources in the 0.5–4.5 keV energy band (BSS) and a complementary (smaller) sample in the 4.5–7.5 keV energy band (HBSS). The work is partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributors directly founded by ESA member states and the USA(NASA) and on observations collected at TNG. The TNG telescope is operated on the island of La Palma by the Centro Galileo Galilei of the INAF in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofísica de Canarias. On behalf of the XMM-Newton Survey Science Center.  相似文献   
20.
The Pennsylvanian marine foreland basin of the Cantabrian Zone (NW Spain) is characterized by the unique development of kilometre‐size and hundred‐metre‐thick carbonate platforms adjacent to deltaic systems. During Moscovian time, progradational clastic wedges fed by the orogen comprised proximal alluvial conglomerates and coal‐bearing deltaic sequences to distal shelfal marine deposits associated with carbonate platforms (Escalada Fm.) and distal clay‐rich submarine slopes. A first phase of carbonate platform development (Escalada I, upper Kashirian‐lower Podolskian) reached a thickness of 400 m, nearly 50 km in width and developed a distal high‐relief margin facing a starved basin, nearly 1000‐m deep. Carbonate slope clinoforms dipped up to 30° and consisted of in situ microbial boundstone, pinching out downslope into calciturbidites, argillaceous spiculites and breccias. The second carbonate platform (Escalada II, upper Podolskian‐lower Myachkovian) developed beyond the previous platform margin, following the basinward progradation of siliciclastic deposits. Both carbonate platforms include: (1) a lower part composed of siliciclastic‐carbonate cyclothems characterized by coated‐grain and ooid grainstones; and (2) a carbonate‐dominated upper part, composed of tabular and mound‐shaped wackestone and algal‐microbial boundstone strata alternating at the decametre scale with skeletal and coated‐grain grainstone beds. Carbonate platforms initiated in distal sectors of the foreland marine shelf during transgressions, when terrigenous sediments were stored in the proximal part, and developed further during highstands of 3rd‐order sequences in a high‐subsidence context. During the falling stage and lowstand systems tracts, deltaic systems prograded across the shelf burying the carbonate platforms. Key factors involved in the development of these unique carbonate platforms in an active foreland basin are: (1) the large size of the marine shelf (approaching 200 km in width); (2) the subsidence distribution pattern across the marine shelf, decreasing from proximal shoreline to distal sectors; (3) Pennsylvanian glacio‐eustacy affecting carbonate lithofacies architecture; and (4) the environmental conditions optimal for fostering microbial and algal carbonate factories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号