首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   14篇
测绘学   4篇
大气科学   6篇
地球物理   35篇
地质学   80篇
海洋学   18篇
天文学   16篇
自然地理   25篇
  2023年   2篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   11篇
  2012年   4篇
  2011年   9篇
  2010年   7篇
  2009年   13篇
  2008年   9篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2003年   4篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1961年   1篇
  1955年   2篇
  1937年   1篇
排序方式: 共有184条查询结果,搜索用时 406 毫秒
91.
Changes in labour productivity feed through directly to national income. An external shock, like climate change, which may substantially reduce the productivity of workers is therefore a macroeconomic concern. The biophysical impact of higher temperatures on human performance is well documented. Less well understood are the wider effects of higher temperatures on the aggregate productivity of modern, diversified economies, where economic output is produced in contexts ranging from outdoor agriculture to work in air-conditioned buildings. Working conditions are at least to some extent the result of societal choices, which means that the labour productivity effects of heat can be alleviated through careful adaptation. A range of technical, regulatory/infrastructural and behavioural options are available to individuals, businesses and governments. The importance of local contexts prevents a general ranking of the available measures, but many appear cost-effective. Promising options include the optimization of working hours and passive cooling mechanisms. Climate-smart urban planning and adjustments to building design are most suitable to respond to high base temperature, while air conditioning can respond flexibly to short temperature peaks if there is sufficient cheap, reliable and clean electricity.

Key policy insights

  • The effect of heat stress on labour productivity is a key economic impact of climate change, which could affect national output and workers’ income.

  • Effective adaptation options exist, such as shifting working hours and cool roofs, but they require policy intervention and forward planning.

  • Strategic interventions, such as climate-smart municipal design, are as important as reactive or project-level adaptations.

  • Adaptation solutions to heat stress are highly context specific and need to be assessed accordingly. For example, shifting working hours could be an effective way of reducing the effect of peak temperatures, but only if there is sufficient flexibility in working patterns.

  相似文献   
92.
We have used cosmogenic 3He to date pre- and post-collapse lava flows from southwestern Fogo, Cape Verdes, in order to date rift zone magmatic reorganisation following the lateral collapse of the flank of the Monte Amarelo volcano. The post-collapse flows have exposure ages ranging from 62 to 11 ka. The analysis of multiple flow tops on each lava flows, often at different elevations, provides an internal check for age consistency and the exposures ages conform with stratigraphic level. The exposure ages suggest that volcanic activity along the western branch of the triple-armed rift zone was more or less continuous from before 62 ka to approximately 11 ka. The absence of magmatic activity for the last 11 kyr reflects a structural reconfiguration of the volcano and may be related to renewed flank instability. This volcanic hiatus is similar in duration to that observed in the Canary Islands. Replicate 3He exposure ages of a pre-collapse flow (123.0 ± 5.2 ka) brackets the time of the Monte Amarelo collapse between 62 ka and 123 ka. Reproducible cosmogenic 3He exposure ages of less than 123 ka from flows away from major erosion features demonstrates that the technique is a viable alternative to the radiocarbon, K/Ar and 40Ar/39Ar chronometers for dating recent volcanism in arid climate zones.  相似文献   
93.
Curation and preparation of samples for chemical analysis can occasionally lead to significant contamination. This issue is of concern in the study of lunar samples, especially those from the Apollo sample collection, where available masses are finite. Here we present compositional data for stainless steels that have commonly been used in the processing of Apollo lunar samples at NASA Johnson Space Center, including a chisel and a vessel typically used to transfer Apollo samples to principal investigators. The Type 304 stainless steels are Cr-rich, with high concentrations of Mn (4000–18,000 μg g−1), Cu (1000–22,900 μg g−1), Mo (1030–1120 μg g−1), and W (72–193 μg g−1). They have elevated highly siderophile element (HSE) concentrations (up to 92 ng g−1 Os), 187Os/188Os ranging from 0.1310 to 0.1336, and negligible lithophile element abundances. We find that, while metal contamination is possible, significant (≫0.01% by mass) addition of stainless steel is required to strongly affect the composition of the HSE, W, Mo, Cr, or Cu for most Apollo lunar samples. Nonetheless, careful appraisal on a case-by-case basis should take place to ensure contamination introduced through sample processing during curation is at acceptably low levels. A survey of lunar mare basalts and crustal rocks indicates that metal contamination plays a negligible role in the compositional variability of the HSE and W compositions preserved in these samples. Further work to constrain contamination for other properties of Apollo samples is required (e.g., organics, microbes, water, noble gases, and magnetics), but the effect of metal contamination can be well-constrained for the Apollo lunar collection.  相似文献   
94.
95.
In the absence of consensus on the quantity and level of zoning protection required for coral reef and lagoon ecosystems, which process can guide decision makers? The Great Barrier Reef Marine Park Authority (GBRMPA) worked with experts in a collaborative process to develop a set of Biophysical Operational Principles to guide the design of a network of no-take areas. First, 82 expert scientists were asked to provide data and advice on the physical, biological and ecological dimensions of the Great Barrier Reef ecosystem. They recommended that an independent Scientific Steering Committee (the Committee) was set up. How this Committee worked successfully with the GBRMPA staff is detailed here in a manner to enable other resource managers to adopt the process if they are working in data-limited marine environments.  相似文献   
96.
Extinct volcanic islands in the Bismarck volcanic arc are fringed by well-developed coral reefs. Drowned platforms offshore from these islands provide evidence for subsidence in the central section of the arc, north of the Finisterre Terrane–Australia collision. Bathymetric and backscatter data collected onboard the R/V Kilo Moana in 2004 reveal regularly spaced (~200 m interval) drowned platforms at depths as much as 1,100 m below sea level. However, the adjacent mainland coast has well documented raised terraces indicating long-term uplift. Local subsidence may be due to cessation of magmatic activity and cooling, flexural loading by the uplifting Finisterre Range, loading by nearby active volcanic islands, and/or sediment loading on the seafloor north of the Finisterre Range. We present some simple models in order to test whether flexural loading can account for local subsidence. We find that volcanic and sedimentary loading can explain the inferred relative subsidence.  相似文献   
97.
Jon Day   《Marine Policy》2008,32(5):823-831
An increasing number of scientists and resource managers recognise that successful marine management approaches, including marine spatial planning (MSP), cannot occur without effective monitoring, evaluation and adaptation. These basic components are necessary to ensure that any marine planning or marine management measures are both effective and efficient. While a number of fundamental principles for marine monitoring, evaluation and adaptive management exist, there are varying levels of understanding about how these should be undertaken and what they may achieve. Challenges include the development of realistic and measurable objectives and indicators against which effectiveness can be practically measured. The matter becomes even more complicated as the focus of marine planning and management strategies changes from ‘single species’ to ‘habitats’ and ‘ecosystems’ that may enable a diversity of permitted uses consistent with a variety of overall objectives. Over the last 30 years, the Great Barrier Reef Marine Park (GBRMP) has successfully established a multiple-use spatial management approach that allows both high levels of environmental protection and a wide range of human activities. Drawing on this unique long-term experience in the GBRMP, this article discusses key aspects of effective monitoring and evaluation, and summarises lessons learned from over two decades of adaptive management.  相似文献   
98.
A 1-D biogeochemical reactive transport model with a full set of equilibrium and kinetic biogeochemical reactions was developed to simulate the fate and transport of arsenic and mercury in subaqueous sediment caps. Model simulations (50?years) were performed for freshwater and estuarine scenarios with an anaerobic porewater and either a diffusion-only or a diffusion plus 0.1-m/year upward advective flux through the cap. A biological habitat layer in the top 0.15?m of the cap was simulated with the addition of organic carbon. For arsenic, the generation of sulfate-reducing conditions limits the formation of iron oxide phases available for adsorption. As a result, subaqueous sediment caps may be relatively ineffective for mitigating contaminant arsenic migration when influent concentrations are high and sorption capacity is insufficient. For mercury, sulfate reduction promotes the precipitation of metacinnabar (HgS) below the habitat layer, and associated fluxes across the sediment–water interface are low. As such, cap thickness is a key design parameter that can be adjusted to control the depth below the sediment–water interface at which mercury sulfide precipitates. The highest dissolved methylmercury concentrations occur in the habitat layer in estuarine environments under conditions of advecting porewater, but the highest sediment concentrations are predicted to occur in freshwater environments due to sorption on sediment organic matter. Site-specific reactive transport simulations are a powerful tool for identifying the major controls on sediment- and porewater-contaminant arsenic and mercury concentrations that result from coupling between physical conditions and biologically mediated chemical reactions.  相似文献   
99.
The history of the solar system is locked within the planets, asteroids and other objects that orbit the Sun. While remote observations of these celestial bodies are essential for understanding planetary processes, much of the geological and geochemical information regarding solar system heritage comes directly from the study of rocks and other materials originating from them. The diversity of materials available for study from planetary bodies largely comes from meteorites; fragments of rock that fall through Earth's atmosphere after impact‐extraction from their parent planet or asteroid. These extra‐terrestrial objects are fundamental scientific materials, providing information on past conditions within planets, and on their surfaces, and revealing the timing of key events that affected a planet's evolution. Meteorites can be sub‐divided into four main groups: (1) chondrites, which are unmelted and variably metamorphosed ‘cosmic sediments’ composed of particles that made up the early solar nebula; (2) achondrites, which represent predominantly silicate materials from asteroids and planets that have partially to fully melted, from a broadly chondritic initial composition; (3) iron meteorites, which represent Fe‐Ni samples from the cores of asteroids and planetesimals; and (4) stony‐iron meteorites such as pallasites and mesosiderites, which are mixtures of metal and dominantly basaltic materials. Meteorite studies are rapidly expanding our understanding of how the solar system formed and when and how key events such as planetary accretion and differentiation occurred. Together with a burgeoning collection of classified meteorites, these scientific advances herald an unprecedented period of further scientific challenges and discoveries, an exciting prospect for understanding our origins.  相似文献   
100.
We have measured δ44/42Ca of laboratory-precipitated calcite grown in an experimental setup that closely replicates stalagmite formation. Calcium solutions were dripped onto two different substrates in tightly-controlled conditions and calcite precipitated due to rapid CO2 degassing. With seeded glass slides as the substrate, we observe a Ca isotope ratio in the calcite which is ∼0.5‰ per amu lower than that in the growth solution. This fractionation is generally almost twice that observed in previously published calcite growth experiments and indicates a large kinetic effect on Ca isotopes in the stalagmite growth environment. The precipitate forming near the spot where the drip lands shows slightly greater solution-to-precipitate fractionation than calcite further from the drip reflecting a decrease in this kinetic fractionation as precipitation continues. We interpret these results in the context of the model of Fantle and DePaolo (2007) which involves surface entrapment of light Ca isotopes to decrease calcite δ44/42Ca, and depletion of Ca from the solution in the direct vicinity of the growing calcite to increase calcite δ44/42Ca. In the stalagmite setting, the second of these effects is minimized so that calcite Ca isotope ratios are unusually light. This interpretation suggests that stalagmite Ca isotope ratios should decrease with the saturation state of the drip water (i.e. with the growth rate of calcite). Ca isotopes might therefore allow reconstruction of surface entrapment of trace metals and isotopes more generally and might, for instance, allow an assessment of the appropriate relationship between oxygen isotope fractionation and temperature for periods of past growth in stalagmites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号