首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2385篇
  免费   60篇
  国内免费   60篇
测绘学   67篇
大气科学   377篇
地球物理   529篇
地质学   589篇
海洋学   626篇
天文学   185篇
综合类   36篇
自然地理   96篇
  2024年   2篇
  2023年   5篇
  2022年   21篇
  2021年   37篇
  2020年   40篇
  2019年   48篇
  2018年   116篇
  2017年   110篇
  2016年   159篇
  2015年   76篇
  2014年   152篇
  2013年   211篇
  2012年   103篇
  2011年   142篇
  2010年   145篇
  2009年   145篇
  2008年   136篇
  2007年   135篇
  2006年   107篇
  2005年   101篇
  2004年   103篇
  2003年   67篇
  2002年   54篇
  2001年   48篇
  2000年   33篇
  1999年   32篇
  1998年   23篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1990年   11篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   10篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1968年   1篇
排序方式: 共有2505条查询结果,搜索用时 15 毫秒
981.
A series of tests in both laboratory and field were performed to investigate the engineering and mechanical properties, especially flexural strength, of cement-stabilized soils. The strength of cement-stabilized soils mainly depends on water-to-cement ratio and curing temperature. The higher curing temperature and the longer curing time, the higher strength in cement-stabilized soils generates. The high ratio of water-to-cement results in lower strength. The compressive strength observed in the field is similar to the strength in the laboratory. Field tests on a cement-stabilized soil layer indicate that the strength is significantly affected by the thickness of the improved layer, which is directly related to the moment of inertia. In addition, the failure shape observed in a cement-stabilized layer in the field looks likes a bending failure type, because the flexural tensile strength, rather than the compressive strength, mainly dominates the failure of cement-stabilized layer. The flexural tensile strength is closely related to the moment of inertia. Therefore, the flexural tensile strength should be considered for determining the thickness and strength in improvement of soft clay.  相似文献   
982.
This study introduces the operational data assimilation (DA) system at the Korea Institute of Atmospheric Prediction Systems (KIAPS) to the numerical weather prediction community. Its development history and performance are addressed with experimental illustrations and the authors’ previously published studies. Milestones in skill improvements include the initial operational implementation of three-dimensional variational data assimilation (3DVar), the ingestion of additional satellite observations, and changing the DA scheme to a hybrid four-dimensional ensemble-variational DA using forecasts from an ensemble based on the local ensemble transform Kalman filter (LETKF). In the hybrid system, determining the relative contribution of the ensemble-based covariance to the resultant analysis is crucial, particularly for moisture variables including a variety of horizontal scale spectra. Modifications to the humidity control variable, partial rather than full recentering of the ensemble for humidity further improves moisture analysis, and the inclusion of more radiance observations with higher-level peaking channels have significant impacts on stratosphere temperature and wind performance. Recent update of the operational hybrid DA system relative to the previous 3DVar system is described for detailed improvements with interpretation.  相似文献   
983.
Using cosmological hydrodynamic simulations, we measure the mean transmitted flux in the Lyα forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel quasar separation distance can be fitted using a simple power-law form including the usual correlation function parameters r 0 and γ, so that     . From the simulations, we find the relation between r 0 and quasar host mass, and formulate this as a way to estimate quasar host dark matter halo masses, quantifying uncertainties due to cosmological and IGM parameters, and redshift errors. With this method, we examine data for ∼9000 quasars from the Sloan Digital Sky Survey (SDSS) Data Release 5, assuming that the effect of ionizing radiation from quasars (the so-called transverse proximity effect) is unimportant (no evidence for it is seen in the data). We find that the best-fitting host halo mass for SDSS quasars with mean redshift z = 3 and absolute G -band magnitude −27.5 is  log  M /M= 12.68+0.81−0.67  . We also use the Lyman-Break Galaxy (LBG) and Lyα forest data of Adelberger et al. in a similar fashion to constrain the halo mass of LBGs to be  log10  M /M= 11.41+0.54−0.59  , a factor of ∼20 lower than the bright quasars. In addition, we study the redshift distortions of the Lyα forest around quasars, using the simulations. We use the quadrupole to monopole ratio of the quasar Lyα forest correlation function as a measure of the squashing effect. We find its dependence on halo mass difficult to measure, but find that it may be useful for constraining cosmic geometry.  相似文献   
984.
The profile of a river that conveys sediment without net deposition and net erosion is referred to as ‘graded’ with respect to vertical aggradation of the river segment. Three experimental series, designed in terms of the autostratigraphic view of alluvial grade, were conducted to clarify the diagnostic spatial behaviour of graded alluvial–deltaic rivers: an ‘R series’, which utilized a moving boundary setting with a stationary base level; an ‘F series’ in a fixed boundary setting with a stationary base level to produce ‘forced grade’; and an ‘M series’ in a moving boundary setting with constant base‐level fall to produce ‘autogenic grade.’ The results of the three experimental series, combined with geometrical modelling of the effects of basin water depth and other experimental data, suggest the following: (i) in a graded alluvial–deltaic system, lateral shifting and avulsing of active distributary channels are suppressed regardless of whether the downstream boundary of the deltaic system is fixed; (ii) in a delta with a downstream‐fixed boundary, the graded streams are stabilized within a valley that is incised in the axial part of the delta plain, whereby the alluvial plain outside the valley is abandoned and terraced; (iii) in moving boundary settings, the graded river simply extends basinward as a linearly elongated channel and lobe system without cutting a valley; and (iv) a modern forced‐graded alluvial river is most likely to be found in a valley incised into a fan delta in front of very deep water, and the stratigraphic signal of fossil autogenic‐graded rivers will be found in deltaic successions that accumulated in the outer to marginal areas of deltaic continental shelves during sea‐level falls. This renewed autostratigraphic view of alluvial grade suggests a thorough reconsideration of the conventional understanding that an alluvial river feeding a progradational delta is graded with a stationary base level.  相似文献   
985.
Land Data Assimilation Systems have been developed to generate the surface initial conditions such as soil moisture and temperature for better prediction of weather and climate. We have constructed Korea Land Data Assimilation System (KLDAS) based on an uncoupled land surface modeling framework that integrates high-resolution in-situ observation, satellite data, land surface information from the WRF Preprocessing System (WPS) and the MODIS land products over the East Asia. To present better surface conditions, the KLDAS is driven by atmospheric forcing data from the in-situ rainfall gauges and satellite. In this study, we 1) briefly introduce the KLDAS, 2) evaluate the meteorological states near the surface and the surface fluxes reproduced by the KLDAS against the in-situ observation, and then 3) examine the performance of the mesoscale model initialized by the KLDAS. We have generated a 5-year, 10 km, hourly atmospheric forcing dataset for use in KLDAS operating across East Asia. The KLDAS has effectively reproduced the observed patterns of soil moisture, soil temperature, and surface fluxes. Further scrutiny reveals that the numerical simulations incorporating the KLDAS outputs show better agreement in both the simulated near-surface conditions and rainfall distribution over the Korean Peninsula, compared to those without the KLDAS.  相似文献   
986.
We investigated the regional-scale relationships between columnar aerosol loads and summer monsoon circulation, and also the precipitation over northeast Asia using aerosol optical depth (AOD) data obtained from the 8-year MODIS, AERONET Sun/sky radiometer, and precipitation data acquired under the Global Precipitation Climatology Project (GPCP). These high-quality data revealed the regional-scale link between AOD and summer monsoon circulation, precipitation in July over northeast Asian countries, and their distinct spatial and annual variabilities. Compared to the mean AOD for the entire period of 2001–2008, the increase of almost 40–50% in the AOD value in July 2005 and July 2007 was found over the downwind regions of China (Yellow Sea, Korean peninsula, and East Sea), with negative precipitation anomalies. This can be attributable to the strong westerly confluent flows, between cyclone flows by continental thermal low centered over the northern China and anticyclonic flows by the western North Pacific High, which transport anthropogenic pollution aerosols emitted from east China to aforementioned downwind high AOD regions along the rim of the Pacific marine airmass. In July 2002, however, the easterly flows transported anthropogenic aerosols from east China to the southwestern part of China in July 2002. As a result, the AOD off the coast of China was dramatically reduced in spite of decreasing rainfall. From the calculation of the cross-correlation coefficient between MODIS-derived AOD anomalies and GPCP precipitation anomalies in July over the period 2001–2008, we found negative correlations over the areas encompassed by 105–115°E and 30–35°N and by 120–140°E and 35–40°N (Yellow Sea, Korean peninsula, and East Sea). This suggests that aerosol loads over these regions are easily influenced by the Asian monsoon flow system and associated precipitation.  相似文献   
987.
Source/sink strengths and vertical fluxdistributions of carbon dioxide within and above arice canopy were modelled using measured meanconcentration profiles collected during aninternational rice experiment in Okayama, Japan (IREX96). The model utilizes an Eulerian higher-orderclosure approach that permits coupling of scalar andmomentum transport within vegetation to infer sourcesand sinks from mean scalar concentration profiles; theso-called `inverse problem'. To compute the requiredvelocity statistics, a Eulerian second-order closuremodel was considered. The model well reproducedmeasured first and second moment velocity statisticsinside the canopy. Using these modelled velocitystatistics, scalar fluxes within and above the canopywere computed and compared with CO2eddy-correlation measurements above the canopy. Goodagreement was obtained between model calculations offluxes at the top of the canopy and measurements. Close to the ground, the model predicted higherrespiratory fluxes when the paddy was drained comparedto when it was flooded. This is consistent with thefloodwater providing a barrier to diffusion ofCO2 from the soil to the atmosphere. TheEulerian sources and flux calculations were alsocompared to source and flux distributions estimatedindependently using a Lagrangian Localized Near Fieldtheory, the first study to make such a comparison.Some differences in source distributions werepredicted by these analyses. Despite this, thecalculated fluxes by the two approaches compared wellprovided a closure constant, accounting for theinfluence of `near-field' sources in the Eulerian fluxtransport term, was given a value of 1.5 instead ofthe value of 8 found in laboratory studies.  相似文献   
988.
Australia’s Integrated Marine Observing System (IMOS, imos.org.au) is research infrastructure to establish an enduring observing program for Australian oceanic waters and shelf seas. The observations cover physical, biological, and chemical variables to address themes of multi-decadal ocean change, climate variability and weather extremes, boundary currents and inter-basin flows, continental shelf processes and ecosystem responses.IMOS observations are collected by national facilities based on various platform types and operated by partner institutions around the country. In this paper we describe the infrastructure and workflows developed to manage and distribute the data to the public. We highlight the existing standards and open-source software we have adopted, and the contributions we have made. To demonstrate the value of this infrastructure we provide some illustrations of use and uptake.All IMOS data are freely and openly available to the public via the Ocean Portal (https://imos.aodn.org.au). All IMOS-developed software is open-source and accessible at https://github.com/aodn.  相似文献   
989.
In an effort to investigate both large-scale (spatial) and short/long-term (temporal) distribution characteristics of atmospheric mercury, we have combined and analyzed the Hg concentration data sets collected continuously by four different scientific groups for the areas and periods covering (1) America (three sites near the Canadian Great Lakes (CGL): 1997–2000), (2) Asia (Seoul, Korea (SEL): 1997–2002), (3) Arctic (Alert, Canada (ALT): 1995–2001), and (4) Europe (Mace Head, Ireland (MH): 1996–2002). The mean concentrations of Hg data from those widely dispersed monitoring stations were computed to be (1) 1.58 ± 0.23, 1.69 ± 0.32, and 1.93 ± 0.44 (three sites in CGL), (2) 5.06 ± 2.46 ng m–3 (SEL), (3) 1.55 ± 0.41 (ALT), and (4) 1.76 ± 0.31 (MH). Intersite relationships were investigated among all different stations using the data groups divided into different temporal intervals. The analysis of diurnal variation patterns of Hg indicated differences in regional source/sink characteristics, with increasing amplitudes of variability toward areas under the strong influence of anthropogenic sources. When the analysis was made over different seasons, the patterns contrasted greatly between the Arctic and the other areas. It was found that the relative enhancement of Hg concentrations was dominant during winter/spring in most areas due to direct or indirect influences of anthropogenic emissions. However, the pattern for the Arctic area was distinguished pronouncedly from others with the spring minimum and summer maximum both of which reflect the potent effects of mercury depletion phenomenon (MDP). By contrast, no long-term trend, either being an increase or decrease, was evident from any of the stations during each respective study period. Although our initial attempts to examine the distribution characteristics of Hg analyzed by different scientific groups were successful, we feel that these efforts should be continued further to extend the compatibility of the global database of Hg.  相似文献   
990.
This study examines the potential impact of vegetation feedback on changes in summer climate aridity over the contiguous United States (US) due to the doubling of atmospheric CO2 concentration using a set of 100-year-long climate simulations made by a global climate model interactively coupled with a dynamic vegetation model. The Thornthwaite moisture index (I m ), which quantifies climate aridity on the basis of atmospheric water supply (i.e., precipitation) and atmospheric water demand (i.e., potential evapotranspiration, PET), is used to measure climate aridity. Warmer atmosphere and drier surface resulting from increased CO2 concentration increase climate aridity over most of the contiguous US. This phenomenon is due to larger increments in PET than in precipitation, regardless of the presence or absence of vegetation feedback. Compared to simulations without active dynamic vegetation feedback, the presence of vegetation feedback significantly alleviates the increase in aridity. This vegetation-feedback effect is most noticeable in the subhumid regions such as southern, midwestern and northwestern US, primarily by the increasing vegetation greenness. In these regions, the greening in response to warmer temperatures enhances moisture transfer from soil to atmosphere by evapotranspiration (ET). The increased ET and subsequent moistening over land areas result in weaker surface warming (1–2?K) and PET (3–10?mm?month?1), and greater precipitation (4–10?mm?month?1). Collectively, they result in moderate increases in I m . Our results suggest that moistening by enhanced vegetation feedback may prevent aridification under climatic warming especially in areas vulnerable to climate change, with consequent implications for mitigation strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号