The gizzard shad, Konosirus punctatus, is one of the most important fish species in Korea, China, Japan and Taiwan, and therefore the implementation of an appropriate population structure analysis is both necessary and fitting. In order to clarify the current distribution range for the two lineages of the Korean gizzard shad (Myoung and Kim 2014), we conducted a multivariate morphometric analysis by locality and lineage. We analyzed 17 morphometric and 5 meristic characters of 173 individuals, which were sampled from eight localities in the East Sea, the Yellow Sea and the Korean Strait. Unlike population genetics studies, the canonical discriminant analysis (CDA) results showed that the two morphotypes were clearly segregated by the center value “0” of CAN1, of which morphotype A occurred from the Yellow Sea to the western Korean Strait with negative values, and morphotype B occurred from the East Sea to the eastern Korean Strait with positive values even though there exists an admixture zone in the eastern Korean Strait. Further studies using more sensitive markers such as microsatellite DNA are required in order to define the true relationship between the two lineages. 相似文献
A pilot study to measure methane flux using eddy correlation sensors was conducted in a peatland ecosystem in north central Minnesota. A prototype tunable diode laser spectrometer system was employed to measure the fluctuations in methane concentration.The logarithmic cospectrum of methane concentration and vertical wind velocity fluctuations under moderately unstable conditions had a peak nearf = 0.10 (wheref is the nondimensional frequency) and was quite similar to the cospectra of water vapor and sensible heat. Daytime methane flux during the first two weeks of August ranged from 120 to 270 mg m-2 day-1. The temporal variation in methane fluxes was consistent with changes in peat temperature and water table elevation. Our results compared well with the range of values obtained in previous studies in Minnesota peatlands.These field observations demonstrate the utility of the micrometeorological eddy correlation technique for measuring surface fluxes of methane. The current state-of-the-art in tunable diode laser spectroscopy makes this approach practical for use in key ecosystems.Published as Paper No. 9556, Journal Series, Nebraska Agricultural Research Division. 相似文献
This study introduces a new Triangulated Irregular Network(TIN) compression method and a progressive visualization technique using Delaunay triangulation. The compression strategy is based on the assumption that most triangulated 2.5-dimensional terrains are very similar to their Delaunay triangulation. Therefore, the compression algorithm only needs to maintain a few edges that are not included in the Delaunay edges. An efficient encoding method is presented for the set of edges by using vertex reordering and a general bracketing method. In experiments, the compression method examined several sets of TIN data with various resolutions, which were generated by five typical terrain simplification algorithms. By exploiting the results, the connecting structures of common terrain data are compressed to 0.17 bits per vertex on average, which is superior to the results of previous methods. The results are shown by a progressive visualization method for web-based GIS. 相似文献
Using coral data, sea surface temperature (SST) reanalysis data, and Climate Model Intercomparison Project III (CMIP3) data, we analyze 20th-century and future warm pool and cold tongue SST trends. For the last 100?years, a broad La Nina-like SST trend, in which the warming trend of the warm pool SST is greater than that of the cold tongue SST, has appeared in reanalysis SST data sets, 20C scenario experiments of the CMIP3 data and less significantly in coral records. However, most Coupled General Circulation Models subjected to scenarios of future high greenhouse gas concentrations produce larger SST warming trends in cold tongues than in warm pools, resembling El Nino-like SST patterns. In other words, warmer tropical climate conditions correspond to stronger El Nino-like response. Heat budget analyses further verify that warmer tropical climates diminish the role of the ocean’s dynamic thermostat, which currently regulates cold tongue temperatures. Therefore, the thermodynamic thermostat, whose efficiency depends on the mean temperature, becomes the main regulator (particularly via evaporative cooling) of both warm pool and cold tongue temperatures in future warm climate conditions. Thus, the warming tendency of the cold tongue SST may lead that of the warm pool SST in near future. 相似文献
Due to the complex characteristics of drought, drought risk needs to be quantified by combining drought vulnerability and drought hazard. Recently, the major focus in drought vulnerability has been on how to calculate the weights of indicators to comprehensively quantify drought risk. In this study, principal component analysis (PCA), a Gaussian mixture model (GMM), and the equal-weighting method (EWM) were applied to objectively determine the weights for drought vulnerability assessment in Chungcheong Province, located in the west-central part of South Korea. The PCA provided larger weights for agricultural and industrial factors, whereas the GMM computed larger weights for agricultural factors than did the EWM. The drought risk was assessed by combining the drought vulnerability index (DVI) and the drought hazard index (DHI). Based on the DVI, the most vulnerable region was CCN9 in the northwestern part of the province, whereas the most drought-prone region based on the DHI was CCN12 in the southwest. Considering both DVI and DHI, the regions with the highest risk were CCN12 and CCN10 in the southern part of the province. Using the proposed PCA and GMM, we validated drought vulnerability using objective weighting methods and assessed comprehensive drought risk considering both meteorological hazard and socioeconomic vulnerability.
Long-term variability in the intermediate layer of the eastern Japan Basin has been investigated to understand the variability
of water mass formation in the East Sea. The simultaneous decrease of temperature at shallower depths and oxygen increasing
at deeper depths in the intermediate layer took place in the late 1960’s and the mid-1980’s. Records of winter sea surface
temperatures and air temperatures showed that there were cold winters that persisted for several years during those periods.
Therefore, it was assumed that a large amount of newly-formed water was supplied to the intermediate layer during those cold
winters. Close analysis suggests that the formation of the Upper Portion of Proper Water occurred in the late 1960’s and the
Central Water in the mid-1980’s. 相似文献
In this paper, the radar cross section of flat plates on ocean surfaces is statistically investigated. A combining method of physical optics and geometric optics is applied to establish an effective backscattering analysis procedure. This method is a high-frequency analysis method originally derived from a simplified Stratton-Chu integral equation, assuming that the radar is far away from the target so that Kirchhoff approximation is valid. A Monte-Carlo simulation method is adopted to statistically analyze the effects of undulated ocean surfaces. The ocean surfaces are randomly generated by Pierson-Moskowitz ocean wave spectrum and a directional distribution function. Numerical investigations are carried out for flat plates, with the same height and width but with different inclined angles, on ocean surfaces of various significant wave heights. 相似文献
Urban trees have long been valued for providing ecosystem services (mitigation of the “heat island” effect, suppression of air pollution, etc.); more recently the potential of urban forests to store significant above ground biomass (AGB) has also be recognised. However, urban areas pose particular challenges when assessing AGB due to plasticity of tree form, high species diversity as well as heterogeneous and complex land cover. Remote sensing, in particular light detection and ranging (LiDAR), provide a unique opportunity to assess urban AGB by directly measuring tree structure. In this study, terrestrial LiDAR measurements were used to derive new allometry for the London Borough of Camden, that incorporates the wide range of tree structures typical of an urban setting. Using a wall-to-wall airborne LiDAR dataset, individual trees were then identified across the Borough with a new individual tree detection (ITD) method. The new allometry was subsequently applied to the identified trees, generating a Borough-wide estimate of AGB.
Results
Camden has an estimated median AGB density of 51.6 Mg ha–1 where maximum AGB density is found in pockets of woodland; terrestrial LiDAR-derived AGB estimates suggest these areas are comparable to temperate and tropical forest. Multiple linear regression of terrestrial LiDAR-derived maximum height and projected crown area explained 93% of variance in tree volume, highlighting the utility of these metrics to characterise diverse tree structure. Locally derived allometry provided accurate estimates of tree volume whereas a Borough-wide allometry tended to overestimate AGB in woodland areas. The new ITD method successfully identified individual trees; however, AGB was underestimated by ≤?25% when compared to terrestrial LiDAR, owing to the inability of ITD to resolve crown overlap. A Monte Carlo uncertainty analysis identified assigning wood density values as the largest source of uncertainty when estimating AGB.
Conclusion
Over the coming century global populations are predicted to become increasingly urbanised, leading to an unprecedented expansion of urban land cover. Urban areas will become more important as carbon sinks and effective tools to assess carbon densities in these areas are therefore required. Using multi-scale LiDAR presents an opportunity to achieve this, providing a spatially explicit map of urban forest structure and AGB.
The crustal-scale Kyonggi shear zone of central Korea has been identified as a major boundary between the Precambrian Kyonggi massif in the south and the Imjingang belt in the north. The latter is an eastward extension of the Qinling-Dabie-Sulu collisional belt of China. Field observations and microstructural analysis indicate that the extensional shear zone evolved from a deep crustal ductile regime to a shallow crustal brittle regime, associated with a rapid uplift of the Kyonggi massif following the Late Permian-Early Triassic collision between the Sino-Korean and Yangtze cratons. A Rb-Sr muscovite age (226+/-1.2 Ma) of the mylonite suggests that the extensional ductile shearing occurred during the Late Triassic. 相似文献