首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   20篇
  国内免费   4篇
测绘学   11篇
大气科学   48篇
地球物理   83篇
地质学   135篇
海洋学   59篇
天文学   87篇
综合类   5篇
自然地理   43篇
  2024年   2篇
  2021年   4篇
  2020年   10篇
  2019年   5篇
  2018年   13篇
  2017年   12篇
  2016年   12篇
  2015年   12篇
  2014年   16篇
  2013年   39篇
  2012年   19篇
  2011年   16篇
  2010年   13篇
  2009年   24篇
  2008年   24篇
  2007年   15篇
  2006年   14篇
  2005年   13篇
  2004年   25篇
  2003年   26篇
  2002年   33篇
  2001年   14篇
  2000年   12篇
  1999年   9篇
  1998年   8篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1989年   4篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1973年   2篇
  1971年   2篇
  1969年   2篇
  1966年   2篇
  1923年   1篇
  1887年   1篇
排序方式: 共有471条查询结果,搜索用时 656 毫秒
361.
The characteristics and effects of large-scale flow structures developed in the benthic boundary layer downstream from large topographic features were analysed throughout a tidal cycle. The observed signature of the macro-turbulent features consisted of streamwise modules of low horizontal velocity and high suspended sediment concentration (SSC), alternating with modules of high horizontal velocity and low SSC. These modules extended 10 to 20 m streamwise and exceeded 1 m vertically, and are believed to be related to flow separation effects over large bedforms upstream of the deployment site. The macroscale flow modules intensified the ‘ burst-like ’ turbulent events and favoured sediment transport. ‘ Ejection-like ’ events were magnified during modules of decreasing horizontal velocity and increasing turbidity, whereas ‘ sweep-like ’ events were magnified during modules of increasing horizontal velocity and decreasing SSC. The enhanced turbidity of the macroscale modules may be the result of enhanced upward diffusion of sediment by ejection events, whereas the low-turbidity modules may be induced by increased downward transport of suspended sediment by sweep events. These hypotheses were supported by cross-spectral analysis performed on velocity and suspended sediment concentration time-series recorded at the site. An enhanced (negative) contribution of outward and inward interaction events to the Reynolds stress, compared to those reported in uniform BBLs, resulted in ‘ abnormally ’ low stress values.  相似文献   
362.
Repeated measurement of tephra erosion near Mount St. Helens over a 30-year period at steel stakes, installed on 10 hillslopes in the months following the 1980 eruption, provides a unique long-term record of changing processes, controls and rates of erosion. Intensive monitoring in the first three post-eruption years showed erosion declined rapidly as processes shifted from sheetwash and rilling to rainsplash. To test predictions about changes to long-term rates and processes made based on the 3-year record, we remeasured sites in 1992, 2000 and 2010. Average annual erosion from 1983 to 1992 averaged 3.1 mm year−1 and ranged from 1.4 to 5.9 mm year−1, with the highest rate on moderately steep slopes. Stakes in rills in 1983 generally recorded deposition as the rills became rounded, filled and indistinct by 1992, indicating a continued shift in process dominance to rainsplash, frost action and bioturbation. Recovering plants, where present, also slowed erosion. However, in the second and third decades even unvegetated hillslopes ceased recording net measurable erosion; physical processes had stabilized surfaces from sheetwash and rill erosion in the first few years, and they appear to have later stabilized surfaces against rainsplash erosion in the following few decades. Comparison of erosion rates with suspended sediment flux indicates that within about 6 years post-eruption, suspended sediment yield from tephra-covered slopes was indistinguishable from that in forested basins. Thirty years after its deposition, on moderate and gentle hillslopes, most tephra remained; in well-vegetated areas, plant litter accumulated and soil developed, and where the surface remained barren, bioturbation and rainsplash redistributed and mixed tephra. These findings extend our understanding from shorter-term studies of the evolution of erosion processes on freshly created substrate, confirm earlier predictions about temporal changes to tephra erosion following eruptions, and provide insight into the conditions under which tephra layers are preserved. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
363.
We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.  相似文献   
364.
365.
The purpose of this paper is to present a geographic information system (GIS)-based method for mapping risk to environmental hazards. Framed by the hazards literature, the method has been developed to specifically overcome issues of data compatibility associated with transnational contexts. The approach is elaborated in reference to a project in which risk was spatially characterized, using a suite of biophysical and social indicators, for the Ciudad Juárez (Mexico)–El Paso (USA) metropolis. Results reveal clear spatial disparities in hazard vulnerability, both within and between the two cities, based on the differential allocation of selected risk factors. The case indicates that future international analyses will be advanced by the clear definition of concepts, the systematic mining of compatible variables, and the selection of valid risk indicators based on criteria that balance the need to incorporate contextual specificity with general comparability.  相似文献   
366.
On February 28, 2021, a fireball dropped ∼0.6 kg of recovered CM2 carbonaceous chondrite meteorites in South-West England near the town of Winchcombe. We reconstruct the fireball's atmospheric trajectory, light curve, fragmentation behavior, and pre-atmospheric orbit from optical records contributed by five networks. The progenitor meteoroid was three orders of magnitude less massive (∼13 kg) than any previously observed carbonaceous fall. The Winchcombe meteorite survived entry because it was exposed to a very low peak atmospheric dynamic pressure (∼0.6 MPa) due to a fortuitous combination of entry parameters, notably low velocity (13.9 km s−1). A near-catastrophic fragmentation at ∼0.07 MPa points to the body's fragility. Low entry speeds which cause low peak dynamic pressures are likely necessary conditions for a small carbonaceous meteoroid to survive atmospheric entry, strongly constraining the radiant direction to the general antapex direction. Orbital integrations show that the meteoroid was injected into the near-Earth region ∼0.08 Myr ago and it never had a perihelion distance smaller than ∼0.7 AU, while other CM2 meteorites with known orbits approached the Sun closer (∼0.5 AU) and were heated to at least 100 K higher temperatures.  相似文献   
367.
Sediment fingerprinting appears to offer a valuable alternative to direct monitoring for elucidating the provenance of suspended sediment and the relative importance of spatial zones or subcatchments comprising larger (>500 km2) drainage basins. Against this background, a quantitative composite fingerprinting technique, incorporating both statistically verified multicomponent signatures and a multivariate sediment-mixing model, has been employed to determine the spatial origin of contemporary suspended sediment transported from the upper and middle reaches of the River Exe (601 km2) and River Severn (4325 km2) basins, UK. Spatial origin is addressed in terms of the relative contribution from three distinct geological subareas constituting each study basin. The consistency of the composite fingerprinting approach is examined using the estimates for mean and seasonal variations in source area contributions and also a comparison between the results obtained for individual flood events and alternative lines of evidence provided by flood travel times and the spatial distribution of precipitation. It is argued that fingerprinting estimates for sediment provenance are consistent with existing information on suspended sediment yields from different subcatchments within the study basins, although in the Severn, the role of storage and remobilization in producing signature ‘averaging’ may complicate comparison of the fingerprinting data with typical floodwater routing times. Validation represents the greatest problem for the cost–benefit of fingerprinting and scope still exists for further refinement of the procedures involved. © 1998 John Wiley & Sons, Ltd.  相似文献   
368.
The strength of the surface wave signal in marine X-band radar (MR) images strongly depends on range and azimuth (i.e., the angle between antenna look and peak wave direction). Traditionally, MR wave analysis is carried out in a set of rectangular windows covering the radar field of view (FOV). The FOV is typically partially obstructed, e.g., due to the coastline or ship superstructures. Especially for ships that are subject to regular course changes, this results in an increased variability or error associated with wave parameters. Using MR measurements from R/P FLIP, acquired off California during the 2010 US Office of Naval Research (ONR) high resolution air–sea interaction (Hi-Res) experiment, this study quantifies the dependency of the radar-based 2D wave spectrum and parameters on range and azimuth. With the help of reference data from a nearby Datawell Waverider buoy, we propose empirical methods to remove the dependency and we illustrate their efficacy.  相似文献   
369.
370.
Process dynamics in fluvial‐based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam‐building affect fluvial processes, the complexity in local response can be further increased by flood‐ and sediment‐limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi‐temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446‐km‐long semi‐arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam‐controlled fluvial sand bar deposition, aeolian sand transport, and rainfall‐induced erosion. Empirical rainfall‐erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration‐excess overland flow and gullying govern large‐scale (centimeter‐ to decimeter‐scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic‐driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four‐minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short‐term, storm‐driven rainfall intensity rather than cumulative rainfall, and that erosion can occur outside of wet seasons and even wet years. These results can apply to other similar semi‐arid landscapes where process complexity may not be fully understood. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号