首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   17篇
地质学   53篇
海洋学   11篇
天文学   6篇
自然地理   7篇
  2021年   1篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   9篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   5篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1977年   1篇
  1971年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
11.
Abstract Amphibolites unconformably overlain by a metasedimentary sequence of quartz-muscovite-feldspar-kyanite schists, metagraywackes and epidote-bearing amphibolites occur in the northern portion of the south-western Zamboanga metamorphic basement complex, western Mindanao. These amphibolites (here identified as the Mount Dansalan amphibolites) display relict magmatic textures inherited from cumulate gabbro protoliths. Bulk-rock major and trace-element data are consistent with this hypothesis. Together with the chemistry of relict igneous clinopyroxenes, they indicate a magmatic arc-related signature for the gabbro protoliths. Geochemical data allow us to identify various sources for the associated metasediments: the gabbro themselves for the metagraywackes and a continental basement for the quartz-muscovite-feldspar-kyanite schists. Both sources contributed to the genesis of the epidote-amphibolite metasediments. The compositions of the metamorphic mineral assemblages suggest that the rocks have undergone metamorphism at temperatures ranging from 550°C to 700°C and pressures probably in the range of 5–9 kbar. 40K–40Ar isotopic study of amphibole separates from the Mount Dansalan samples document a metamorphic event dated at 24.6 ± 1.4, 22.2 ± 1.4 and 21.2 ± 1.2 Ma. Our results are in agreement with plate tectonic models which describe the south-western Zamboanga metamorphic basement as a continental terrane. However, its evolution was not as simple as it was usually considered. In particular the basement incorporated slivers of magmatic arc crust, which cannot be unambiguously related to any of the Tertiary arcs documented in the area.  相似文献   
12.
High‐precision 232Th–208Pb dates have been obtained from allanite porphyroblasts that show unambiguous microstructural relationships to fabrics in a major syn‐metamorphic fold in the SE Tauern Window, Austria. Three porphyroblasts were analysed from a single garnet mica schist from the Peripheral Schieferhülle in the core of the Ankogel Synform, one of a series of folds which developed shortly before the thermal peak of Alpine epidote–amphibolite facies metamorphism: allanite grain 1 provided two analyses with a combined age of 27.7 ± 0.7 Ma; grain 2, which was slightly bent and fractured during crenulation, provided two analyses with a combined age of 27.7 ± 0.4 Ma; a single analysis from grain 3, which overgrew an already crenulated fabric, gave an age of 28.0 ± 1.4 Ma. The five 232Th–208Pb ages agree within error and define an isochron with an age of 27.71 ± 0.36 Ma (95% confidence level; MSWD = 0.46). The results imply that the crenulation event was in progress in a short interval (<1 Ma) c. 28 Ma, and that the Ankogel Synform was forming at this time. The thermal peak of regional metamorphism in the SE Tauern Window was probably attained shortly after 28 Ma, only c. 5 Ma after eclogite facies metamorphism in the central Tauern Window. Metasediment may contain allanite porphyroblasts with clear‐cut microstructural relationships to fabric development and metamorphic crystallization; for such rocks, 232Th–208Pb dating on microsamples offers a powerful geochronological tool.  相似文献   
13.
Abstract

Summer severe weather (SSW) can strike suddenly and unexpectedly with disastrous consequences for human activity. Considerable progress has been made in the past ten years in the operational forecasting of SSW. Traditionally, SSW was defined to consist of tornadoes, strong winds, hail, lightning and heavy rain. Hazardous types of strong winds have recently been expanded to include microbursts, macrobursts and surfacing rear inflow jet damage behind mesoscale convective systems. Doppler radar was used to relate surface damage to the appropriate atmospheric phenomena, first diagnostically and then prognostically. This improvement in classification has fedback to and improved the forecast process. Concurrent progress has been made in the use of synoptic observations. The concept of helical wind profiles and improved knowledge of the role of dry mid‐level air has improved the forecasting of tornadoes and strong gusty winds. Moisture flux convergence, derived from surface measurements, shows great promise in identifying areas of storm initiation. Satellite imagery has been used to identify dynamical atmospheric boundaries. Numerical modelling of the interaction of environmental wind profiles and individual thunderstorms has greatly contributed to the understanding of SSW. Studies of spatial and temporal patterns of lightning, both specific cases and climatology, contribute to the forecasting of severe storms. Polarization radar results have shown progress in separating the signals of hail from those of rain and in the improved measurement of heavy rainfalls. Radar observation of clear air boundaries and their interactions show potential for the forecasting of thunderstorm initiation. Though not traditionally considered part of SSW, hurricanes that evolve into extra‐tropical storms share many of the same hazardous features. The progress in computing, communications and display technologies has also made substantial contributions to operational forecasting and to the dissemination of weather warnings.  相似文献   
14.
Abstract: Two adjacent volcanogenic massive sulfide (VMS) deposits, the Main Malusok and the Malusok Southeast, are delineated within Barangay Tabayo, Siocon, Zamboanga del Norte, Mindanao, Philippines. These deposits comprise massive to semi-massive sulfide lenses representing the down-dip equivalent of oxidized gossans. The massive sulfides have a primary mineral assemblage of pyrite-chalcopyrite-sphalerite with significant amounts of supergene copper in the form of chal-cocite. Owing to structural and metamorphic overprinting combined with intense alteration, primary textures are generally obliterated. Rock types are classified according to dominant mineral assemblages whereas the main lithologic units comprising the Malusok volcanic package are divided based on the position of each unit relative to the mineralized zone. The main lithologic units are designated as the hanging wall, the host, and the footwall sequences. In correlating the stratigraphy of the Main Malusok zone with that of the Malusok Southeast zone, a chlorite/epidote-rich interval located at the base of the hanging wall sequence serves as a distinct stratigraphic marker from which all lithologies are referred to. Comparisons between the stratigraphy of the two areas show that massive to semi-massive sulfide lenses are confined within a single stratigraphic interval representing the favorable horizon for the entire Malusok area. However, differences exist relative to style of mineralization and configuration of the altered interval between the Main Malusok and the Malusok Southeast VMS deposits. Based on characteristics exhibited by each individual deposit, it is inferred that the Main Malusok VMS deposit overlies a feeder zone whereas the Malusok Southeast sulfide lenses represent satellite deposits and transported blocks.  相似文献   
15.
16.
17.
Experiments dissolving orthopyroxene (En93) in a variety of Si-undersaturated alkaline melts at 1 atmosphere and variable f O2 demonstrate that orthopyroxene dissolves to form olivine, Si-rich melt and clinopyroxene. These phases form a texturally and chemically distinct boundary layer around the partly dissolved orthopyroxene crystals. The occurrence of clinopyroxene in the boundary layer is due to inward diffusion of Ca from the solvent melt to the boundary layer causing clinopyroxene saturation. Compositional profiles through the solvent and the boundary layer for a number of experiments demonstrate rapid diffusion of cations across the boundary layer – solvent interface. SiO2 diffuses outward from the boundary layer whereas CaO and Al2O3 diffuse toward the Si-enriched boundary layer melt. The rate of Al diffusion is slower under reducing conditions compared to the rates in experiments performed in air. Concentrations of FeO and MgO in the boundary layer and solvent are approximately equal indicating rapid diffusion and attainment of equilibrium despite ongoing crystallisation of clinopyroxene within the boundary layer. The behaviour of Na2O and K2O is strongly affected by f O2. Under reducing conditions Na2O and K2O concentrations are approximately equal in the boundary layer and solvent indicating normal diffusion down the concentration gradient and attainment of equilibrium. Under oxidising conditions, K2O and to a lesser extent Na2O, have compositional profiles indicative of uphill diffusion likely due to their preference for more polymerised Si- and Al-rich melts. Under reduced conditions Al-enrichment in the boundary layer melt is not as extreme and uphill diffusion did not occur. The composition of the solvent melt after the experiments indicates that it was contaminated by the boundary layer by convective mixing due to the onset of hydrodynamic instabilities brought on by density and viscosity contrasts between the two melts. Despite using a wide variety of solvent melt compositions we find that the boundary layer melts converge toward a common composition at high SiO2 contents. The composition of glass generated by orthopyroxene dissolution at 1 atmosphere is similar in many respects to Si-rich glass found in many orthopyroxene-rich mantle xenoliths that have been attributed to high pressure in situ processes including mantle metasomatism. The results of this study suggest that at least some Si-rich melts are likely to have formed by dissolution of xenolith orthopyroxene at low pressure possibly by their Si-undersaturated host magmas. Received: 30 August 1996 / Accepted: 15 April 1998  相似文献   
18.
Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.  相似文献   
19.
Strontium isotopic and petrologic information, obtained from sediment cores collected in the Nile delta of Egypt, indicate that paleoclimatic and Nile baseflow conditions changed considerably from about 4200 to 4000 cal yr B.P. in the Nile basin. Our study records a higher proportion of White Nile sediment transported during the annual floods at ca. 6100 cal yr B.P. than towards 4200 cal yr B.P., at which time suspended sediment from the Blue Nile formed a significantly larger fraction of the total load. This resulted from a decrease in vegetative cover and an increase in erosion rate accompanying the marked decline in rainfall. These new geoscience data indicate major changes in annual flooding and baseflow of the river Nile, marked short‐term paleoclimatic‐related events that may in part have led to the collapse of the Old Kingdom. © 2003 Wiley Periodicals, Inc.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号