首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7928篇
  免费   1026篇
  国内免费   889篇
测绘学   418篇
大气科学   1043篇
地球物理   2704篇
地质学   3592篇
海洋学   716篇
天文学   393篇
综合类   459篇
自然地理   518篇
  2024年   14篇
  2023年   56篇
  2022年   116篇
  2021年   153篇
  2020年   132篇
  2019年   161篇
  2018年   588篇
  2017年   505篇
  2016年   413篇
  2015年   283篇
  2014年   262篇
  2013年   268篇
  2012年   780篇
  2011年   581篇
  2010年   271篇
  2009年   333篇
  2008年   275篇
  2007年   252篇
  2006年   225篇
  2005年   934篇
  2004年   932篇
  2003年   739篇
  2002年   261篇
  2001年   137篇
  2000年   123篇
  1999年   129篇
  1998年   104篇
  1997年   133篇
  1996年   98篇
  1995年   79篇
  1994年   68篇
  1993年   81篇
  1992年   64篇
  1991年   52篇
  1990年   49篇
  1989年   39篇
  1988年   27篇
  1987年   18篇
  1986年   15篇
  1985年   17篇
  1984年   8篇
  1983年   5篇
  1982年   11篇
  1981年   6篇
  1980年   7篇
  1976年   3篇
  1975年   4篇
  1965年   3篇
  1951年   2篇
  1948年   2篇
排序方式: 共有9843条查询结果,搜索用时 31 毫秒
901.
Mangakino, the oldest rhyolitic caldera centre delineated in the Taupo Volcanic Zone of New Zealand, generated two very large (super-sized) ignimbrite eruptions, the 1.21 ± 0.04 Ma >500 km3 Ongatiti and ~1.0 Ma ~1,200 km3 Kidnappers events, the latter of which was followed after a short period of erosion by the ~200 km3 Rocky Hill eruption. We present U/Pb ages and trace-element analyses on zircons from pumice clasts from these three eruptions by Secondary Ion Mass Spectrometry (SIMS) using SHRIMP-RG instruments to illustrate the evolution of the respective magmatic systems. U–Pb age spectra from the Ongatiti imply growth of the magmatic system over ~250 kyr, with a peak of crystallisation around 1.32 Ma, ~100 kyr prior to eruption. The zircons are inferred to have then remained stable in a mush with little crystallisation and/or dissolution before later rejuvenation of the system at the lead-in to eruption. The paired Kidnappers and Rocky Hill eruptions have U–Pb zircon ages and geochemical signatures that suggest they were products of a common system grown over ~200 kyr. The Kidnappers and Rocky Hill samples show similar weakly bimodal age spectra, with peaks at 1.1 and 1.0 Ma, suggesting that an inherited antecrystic population was augmented by crystals grown at ages within uncertainty of the eruption age. In the Kidnappers, this younger age peak is dominantly seen in needle-shaped low U grains with aspect ratios of up to 18. In all three deposits, zircon cores show larger ranges and higher absolute concentrations of trace elements than zircon rims, consistent with zircon crystallisation from evolving melts undergoing crystal fractionation involving plagioclase and amphibole. Abundances and ratios of many trace elements frequently show variations between different sectors within single grains, even where there is no visible sector zoning in cathodoluminescence (CL) imaging. Substitution mechanisms, as reflected in the molar (Sc + Y + REE3+)/P ratio, differ in the same growth zone between the sides (along a-axis and b-axis: values approaching 1.0) and tips (c-axis: values between 1.5 and 5.0) of single crystals. These observations have implications for the use of zircons for tracking magmatic processes, particularly in techniques where CL zonation within crystals is not assessed and small analytical spot sizes cannot be achieved. These observations also limit applicability of the widely used Ti-in-zircon thermometer. The age spectra for the Ongatiti and Kidnappers/Rocky Hill samples indicate that both magmatic systems were newly built in the time-breaks after respective previous large eruptions from Mangakino. Trace element variations defining three-component mixing suggest that zircons, sourced from multiple melts, contributed to the population in each system.  相似文献   
902.
The ~1,000 km3 Carpenter Ridge Tuff (CRT), erupted at 27.55 Ma during the mid-tertiary ignimbrite flare-up in the western USA, is among the largest known strongly zoned ash-flow tuffs. It consists primarily of densely welded crystal-poor rhyolite with a pronounced, highly evolved chemical signature (high Rb/Sr, low Ba, Zr, Eu), but thickly ponded intracaldera CRT is capped by a more crystal-rich, less silicic facies. In the outflow ignimbrite, this upper zone is defined mainly by densely welded crystal-rich juvenile clasts of trachydacite composition, with higher Fe–Ti oxide temperatures, and is characterized by extremely high Ba (to 7,500 ppm), Zr, Sr, and positive Eu anomalies. Rare mafic clasts (51–53 wt% SiO2) with Ba contents to 4,000–5,000 ppm and positive Eu anomalies are also present. Much of the major and trace-element variations in the CRT juvenile clasts can be reproduced via in situ differentiation by interstitial melt extraction from a crystal-rich, upper-crustal mush zone, with the trachydacite, crystal-rich clasts representing the remobilized crystal cumulate left behind by the melt extraction process. Late recharge events, represented by the rare mafic clasts and high-Al amphiboles in some samples, mixed in with parts of the crystal cumulate and generated additional scatter in the whole-rock data. Recharge was important in thermally remobilizing the silicic crystal cumulate by partially melting the near-solidus phases, as supported by: (1) ubiquitous wormy/sieve textures and reverse zoning patterns in feldspars and biotites, (2) absence of quartz in this very silicic unit stored at depths of >4–5 km, and (3) heterogeneous melt compositions in the trachydacite fiamme and mafic clasts, particularly in Ba, indicating local enrichment of this element due mostly to sanidine and biotite melting. The injection of hot, juvenile magma into the upper-crustal cumulate also imparted the observed thermal gradient to the deposits and the mixing overprint that partly masks the in situ differentiation process. The CRT provides a particularly clear perspective on processes of in situ crystal-liquid separation into a lower crystal-rich zone and an upper eruptible cap, which appears common in incrementally built upper-crustal magma reservoirs of high-flux magmatic provinces.  相似文献   
903.
Vanadium occurs in multiple valence states in nature, whereas Nb is exclusively pentavalent. Both are compatible in rutile, but the relationship of V–Nb partitioning and dependence on oxygen fugacity (expressed as fO2) has not yet been systematically investigated. We acquired trace-element concentrations on rutile grains (n = 86) in nine eclogitic samples from the Dabie-Sulu orogenic belt by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) and combined them with published results in order to assess the direct and indirect effects of oxygen fugacity on the partitioning of V and Nb into rutile. A well-defined negative correlation between Nb (7–1,200 ppm) and V concentrations (50–3,200 ppm) was found, documenting a competitive relationship in the rutile crystal that does not appear to be controlled by bulk rock or mineral compositions. Based on the published relationship of RtDV and V valence with ?QFM, we suggest that the priority order of V incorporation into rutile is V4+ > V3+ > V5+. The inferred Nb–V competitive relationship in rutile from the Dabie-Sulu orogenic belt could be explained by decreasing fO2 due to dehydration reactions involving loss of oxidizing fluids during continental subduction: The increased proportion of V3+ (expressed as V3+/∑V) and attendant decrease in RtDV is suggested to lead to an increase in rutile lattice sites available for Nb5+. A similar effect may be observed under more oxidizing conditions. When V5+/∑V increases, RtDV shows a dramatic decline and Nb concentration increases considerably. This is possibly documented by rutile in highly metasomatized and oxidized MARID-type (MARID: mica–amphibole–rutile–ilmenite–diopside) mantle xenoliths from the Kaapvaal craton, which also show a negative V–Nb covariation. In addition, their Nb/Ta covaries with V concentrations: For V concentrations <1,250 ppm, Nb/Ta ranges between 35 and 45, whereas for V > 1,250 ppm, Nb/Ta is considerably lower (5–15). This relationship is mainly controlled by a change in Nb concentrations, suggesting that the indirect dependence of RtDNb on fO2, which is not mirrored in RtDTa, can exert considerable influence on rutile Nb–Ta fractionation.  相似文献   
904.
The Mikabu and Sorachi–Yezo belts comprise Jurassic ophiolitic complexes in Japan, where abundant basaltic to picritic rocks occur as lavas and hyaloclastite blocks. In the studied northern Hamamatsu and Dodaira areas of the Mikabu belt, these rocks are divided into two geochemical types, namely depleted (D-) and enriched (E-) types. In addition, highly enriched (HE-) type has been reported from other areas in literature. The D-type picrites contain highly magnesian relic olivine phenocrysts up to Fo93.5, and their Fo–NiO trend indicates fractional crystallization from a high-MgO primary magma. The MgO content is calculated as high as 25 wt%, indicating mantle melting at unusually high potential temperature (T p) up to 1,650 °C. The E-type rocks represent the enrichment in Fe and LREE and the depletion in Mg, Al and HREE relative to the D-type rocks. These chemical characteristics are in good accordance with those of melts from garnet pyroxenite melting. Volcanics in the Sorachi–Yezo belts can be divided into the same types as the Mikabu belt, and the D-type picrites with magnesian olivines also show lines of evidence for production from high T p mantle. Evidence for the high T p mantle and geochemical similarities with high-Mg picrites and komatiites from oceanic and continental large igneous provinces (LIPs) indicate that the Mikabu and Sorachi–Yezo belts are accreted oceanic LIPs that were formed from hot large mantle plumes in the Late Jurassic Pacific Ocean. The E- and D-type rocks were formed as magmas generated by garnet pyroxenite melting at an early stage of LIP magmatism and by depleted peridotite melting at the later stage, respectively. The Mikabu belt characteristically bears abundant ultramafic cumulates, which could have been formed by crystal accumulation from a primary magma generated from Fe-rich peridotite mantle source, and the HE-type magma were produced by low degrees partial melting of garnet pyroxenite source. They should have been formed later and in lower temperatures than the E- and D-type rocks. The Mikabu and Sorachi Plateaus were formed in a low-latitude region of the Late Jurassic Pacific Ocean possibly near a subduction zone, partially experienced high P/T metamorphism during subduction, and then uplifted in association with (or without, in case of Mikabu) the supra-subduction zone ophiolite. The Mikabu and Sorachi Plateaus may be the Late Jurassic oceanic LIPs that could have been formed in brotherhood with the Shatsky Rise.  相似文献   
905.
Groundmass perovskite has been dated by LA-ICPMS in 135 kimberlites and related rocks from 110 localities across southern Africa. Sr and/or Nd isotopes have been analysed by LA-MC-ICPMS in a subset of these and integrated with published data. The age distribution shows peaks at 1,600–1,800, 1,000–1,200, 500–800 and 50–130 Ma. The major “bloom” of Group I kimberlites at ca 90 ± 10 Ma was preceded by a slow build-up in magmatic activity from ca 180 Ma. The main pulse of Group II kimberlites at 120–130 Ma was a distinct episode within this build-up. Comparison of the isotopic data with seismic tomography images suggests that metasomatized subcontinental lithospheric mantle (SCLM) with very low ε Nd and high 87Sr/86Sr, (the isotopic signature of Group II kimberlites) was focused in low-Vs zones along translithospheric structures. Such metasomatized zones existed as early as 1,800 Ma, but were only sporadically tapped until the magmatic build-up began at ca 180 Ma, and contributed little to the kimberlitic magmas after ca 110 Ma. We suggest that these metasomatized volumes resided in the deep SCLM and that their low-melting point components were “burned off” by rising temperatures, presumably during an asthenospheric upwelling that led to SCLM thinning and a rise in the ambient geotherm between 120 and 90 Ma. The younger Group I kimberlites therefore rarely interacted with such SCLM, but had improved access to shallower volumes of differently metasomatized, ancient SCLM with low 87Sr/86Sr and intermediate ε Nd (0–5). The kimberlite compositions therefore reflect the evolution of the SCLM of southern Africa, with metasomatic-enrichment events from as early as 1.8 Ga, through a major thermal and compositional change at ca 110 Ma, and the major kimberlite “bloom” around 90 Ma.  相似文献   
906.
宁芜盆地白象山铁矿床成矿作用过程数值模拟   总被引:5,自引:1,他引:4  
白象山铁矿床是宁芜火山岩盆地钟姑矿田中典型的玢岩型铁矿床,主矿体赋存于闪长岩和黄马青组砂页岩接触带部位的内带-正带,呈似层状产出。本文采用数值模拟的方法研究探讨白象山铁矿床成矿过程的动力学机制以及汇流容矿空间的形成。在建立白象山矿床典型剖面以及三维实体模型的基础上,选取典型剖面,基于FLAC 3D系统,对白象山铁矿床的充填过程进行数值模拟。模拟结果显示,白象山铁矿床存在容矿汇流空间,其形成受力-热-流体的耦合作用制约;扩容空间的形成可为矿质的沉淀以及交代作用提供有利的成矿空间,并为流体的汇聚提供有利场所,也表明白象山铁矿床的成矿过程与力学作用密切相关。本文的模拟研究充分揭示了白象山铁矿床成矿过程中的物理过程,岩石不同的力学性质以及接触带的形态是控矿的重要因素,这为进一步的找矿工作提供了依据。  相似文献   
907.
张修政  董永胜  李才  解超明  王明  邓明荣  张乐 《岩石学报》2014,30(10):2821-2834
羌塘中部晚三叠世低温/高压变质带是目前青藏高原内部延伸规模最大的高压变质带,但大量关键高压变质岩石出露地区地球化学资料匮乏,严重制约了对高压变质带原岩建造以及构造演化的全面认识。本文以羌塘中西部地区尚无地球化学资料的果干加年山榴辉岩和红脊山蓝片岩为研究对象,进行了系统的地球化学以及原岩恢复工作。研究表明,果干加年山榴辉岩呈透镜状产于围岩石榴石多硅白云母片岩和少量大理岩中,其原岩为亚碱性玄武岩,具有较低的稀土总量(∑REE=51.19×10-6~59.43×10-6)和轻稀土亏损的特征[(La/Yb)N=0.59~0.70],不具有Nb、Ta、Ti的亏损,与典型的N-MORB特征一致,暗示其原岩可能来源于亏损的地幔源区,形成于洋中脊环境。红脊山地区基性蓝片岩的原岩为碱性玄武岩-亚碱性玄武岩,具有高的TiO2(2.97%~4.14%)和P2O5(0.29%~0.48%)含量,富集轻稀土元素[(La/Yb)N=6.10~11.6]和高场强元素,地球化学特征类似于OIB。但是这些基性蓝片岩与大量的陆源碎屑岩伴生产出,且具有明显的硅铝质上地壳物质混染的特征,与南羌塘地区二叠纪大陆板内基性岩墙的产出特征以及地壳混染特征一致,可能是其俯冲消减的产物。通过本文研究结果并结合区域内已识别出的E-MORB型洋壳和洋岛/海山物质深俯冲的证据,我们认为羌塘中部晚三叠世高压变质带以洋壳物质深俯冲为主,同时亦保留了部分陆壳物质俯冲的证据,暗示大洋向北俯冲消减结束之后,又牵引至少一部分南羌塘北缘陆壳物质经历了随后的俯冲过程。  相似文献   
908.
叠覆式三角洲——一种特殊的浅水三角洲   总被引:2,自引:0,他引:2  
不同于常规三角洲以分流河道体系所形成的分流河道、河口坝、席状砂等微相为三角洲朵体的基本单元,叠覆式三角洲以内部结构简单的朵体为基本构成单元,朵体相互叠置,形成复合叠合体,进而构成三角洲骨架。单个朵体由河道扫描或扩展而成,复合朵体则是由单朵体侧向迁移或前(退)积而成。三角洲因大量朵体叠置而形成厚层状、内部结构复杂的复合砂体。不同朵体形成于不同时期,因而不存在统一的分流体系,单一沉积体具有层状特征,但不同期朵体受可容空间和地貌控制,呈三维叠置,而非简单的层状叠加,从而使得三角洲内部呈现出拼合式、立体式特点。单朵体是结构的基本单元,发育范围有限,与相邻朵体发育于不同时间单元,因而只能在复合体约束下小范围追踪。单一朵体接触关系及接触界面的渗流能力决定了油气富集和注水开发响应特征。朵体迁移、叠置造成大面积、巨厚的砂层可形成大型油气藏,而同时朵体间泥岩的不均匀分布也造就了砂体局部不连通或朵体间连通性变化,为岩性油气藏形成创造了条件,并且影响了注水开发中的注采对应性,进而影响水驱采油效果。  相似文献   
909.
琼东南盆地深水区中央峡谷天然气成藏条件与成藏模式   总被引:2,自引:0,他引:2  
杨金海  李才  李涛  宋爱学  王利杰  周刚 《地质学报》2014,88(11):2141-2149
利用钻井岩芯、岩屑地质化验资料及测井、二维、二维地震数据,综合分析了琼东南盆地深水区中央峡谷储层的发育特征、天然气成藏条件及成藏主控因素.结果表明,峡谷中、下部堆积的多期浊积砂岩,储集物性好,是该区带的优质储层;峡谷内发育的大量岩性、构造-岩性复合型圈闭为天然气聚集造就了重要场所;凹陷中的渐新统崖城组煤系烃源岩及广厚的半封闭浅海泥岩生气潜力大,提供了丰富的烃源基础;峡谷下方的底辟/微裂隙是深部崖城组烃源岩生成的天然气向上运移的重要通道.可见,中央峡谷成藏条件优越,圈闭有效性和运移是该区天然气成藏的关键要素;由于峡谷内圈闭大多数定型于上新世莺歌海组沉积时期,与下伏崖城组烃源岩主生气期形成合理配置,因此,天然气成藏较晚,L1、L2和L3气田的重大发现就是很好的例证.  相似文献   
910.
基于再分析资料ERA5的对流层延迟估计方法及精度评估   总被引:1,自引:0,他引:1  
提出基于再分析资料ERA5的天顶对流层延迟计算方法,使用中国大陆构造环境监测网络提供的26个GNSS测站2017年全年数据,评估由该方法计算的天顶对流层延迟的精度,并与前一代再分析资料ERA-Interim的计算结果进行对比分析。结果显示,ERA5计算的天顶对流层延迟均方根误差比ERA-Interim计算结果低,表明新一代产品的精度有明显提升。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号