首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1204篇
  免费   23篇
  国内免费   3篇
测绘学   25篇
大气科学   85篇
地球物理   264篇
地质学   428篇
海洋学   112篇
天文学   198篇
综合类   3篇
自然地理   115篇
  2020年   17篇
  2019年   9篇
  2018年   17篇
  2017年   11篇
  2016年   25篇
  2015年   23篇
  2014年   29篇
  2013年   56篇
  2012年   41篇
  2011年   53篇
  2010年   41篇
  2009年   54篇
  2008年   54篇
  2007年   51篇
  2006年   37篇
  2005年   41篇
  2004年   56篇
  2003年   45篇
  2002年   47篇
  2001年   25篇
  2000年   21篇
  1999年   17篇
  1998年   10篇
  1997年   18篇
  1996年   16篇
  1995年   25篇
  1994年   13篇
  1993年   20篇
  1992年   18篇
  1991年   18篇
  1990年   11篇
  1989年   15篇
  1988年   13篇
  1987年   20篇
  1986年   17篇
  1985年   20篇
  1984年   30篇
  1983年   28篇
  1982年   18篇
  1981年   18篇
  1980年   14篇
  1979年   13篇
  1978年   11篇
  1977年   14篇
  1976年   12篇
  1975年   10篇
  1974年   7篇
  1973年   11篇
  1972年   6篇
  1970年   11篇
排序方式: 共有1230条查询结果,搜索用时 821 毫秒
971.
To date, quantification of individual components that contribute to shallow and deep‐seated subsidence in passive margin deltas worldwide has proven problematic. A new, regional gridded chronostratigraphic dataset for the Lower Mississippi Delta region, derived from 80,928 well reports across the northern Gulf of Mexico (GOM), has bridged the disparity between geodetic mean rates measuring total land surface subsidence across annual‐to‐decadal timescales and the deep‐seated stratigraphic subsidence rates that record isostatic response over timescales of >104 years. Through a quantitative assessment of gridded chronostratigraphic surfaces, sections, and subsidence rates extending from the Middle Pleistocene (0.58 Ma) to the Late Pliocene (3.85 Ma), we identify both temporal and spatial variability in deep‐seated subsidence across the northern GOM. Targeted deep‐seated subsidence data extracted across prior GOM Holocene sea‐level sample locations have revealed more than an order of magnitude greater rates of isostatic compensation in the Mississippi depocentre versus similar GOM sea‐level control sites in Florida and Alabama, casting doubt on efforts towards a representative Holocene sea‐level curve. Spatial variability in subsidence was also assessed locally in both the strike and dip directions to assess the contributions of growth faults. Fault throw displacement magnitude was discovered to decrease with depth, accounting for less than half of the total deep‐seated subsidence record of the Middle Pleistocene. Temporal subsidence complexities were also revealed including a direct, inverse logarithmic relationship between subsidence rate and time indicating variable subsidence component controls across different timescales. Despite the spatial and temporal complexities, this dataset serves as the first regional baseline for deep‐seated subsidence rates across the northern GOM.  相似文献   
972.
Designers and offshore operators frequently predict pack ice loading on offshore vessels by conducting scale model tests. One factor that can affect pack ice loading is the hull–ice friction coefficient. This research investigates the effect of hull–ice friction coefficients for a moored offshore vessel model and includes ice floe size and ice concentration as additional variables. A method of non-dimensional analysis is modified in order to deal with the multivariate nature of the new data. The resulting non-dimensional equation provides insight on relationships between the predicted pack ice force and the variables under investigation. The relationship between pack ice force and hull–ice friction coefficient is shown to be approximately a fourth root function, while the relationship for ice floe size, non-dimensionalised by the vessel beam, is approximately linear. The relationship between predicted pack ice force and ice concentration exists in a band bounded by cubic and sixth power curves. Applying the modified equation to the previous data sets shows the current analysis slightly improves the normalization of pack ice forces.  相似文献   
973.
Detailed measurements of bubble composition, dissolved gas concentrations, and plume dynamics were conducted during a 9-month period at a very intense, shallow (22-m water depth) marine hydrocarbon seep in the Santa Barbara Channel, California. Methane, carbon dioxide, and heavier hydrocarbons were lost from rising seep bubbles, while nitrogen and oxygen were gained. Within the rising seawater bubble plume, dissolved methane concentrations were more than 4 orders of magnitude greater than atmospheric equilibrium concentrations. Strong upwelling flows were observed and bubble-rise times were ~40 s, demonstrating the rapid exchange of gases within the bubble plume.  相似文献   
974.
An analytical model was developed for the dynamic analysis of an articulated loading platform in an operation condition, while remaining in a head seas position. The environmental excitation considered, resulting from groups of regular waves, included first- and second-order force contributions. The nylon hawser connecting the tanker to the ALP was modeled as a nonlinear spring. The hydrodynamic load on the tower was evaluated using Morison's equation, which was modified to account for the relative motion of the tower and the fluid particles. The hydrodynamic load on the tanker was calculated using linear diffraction theory based on the 2-D Helmholtz equation. The “near field” approach of Pinkster was used to evaluate the drift force.  相似文献   
975.
How processing digital elevation models can affect simulated water budgets   总被引:1,自引:0,他引:1  
For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.  相似文献   
976.
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.  相似文献   
977.
A paradigm for the design, monitoring, and optimization of in situ methyl tert -butyl ether (MTBE) aerobic biobarriers is presented. In this technology, an oxygen-rich biologically reactive treatment zone (the "biobarrier") is established in situ and downgradient of the source of dissolved MTBE contamination in groundwater, typically gasoline-impacted soils resulting from leaks and spills at service station sites or other fuel storage and distribution facilities. The system is designed so that groundwater containing dissolved MTBE flows to, and through, the biobarrier treatment zone, ideally under natural gradient conditions so that no pumping is necessary. As the groundwater passes through the biobarrier, the MTBE is converted by microorganisms to innocuous by-products. The system also reduces concentrations of other aerobically degradable chemicals dissolved in the groundwater, such as benzene, toluene, xylenes, and tert -butyl alcohol. This design paradigm is based on experience gained while designing, monitoring, and optimizing pilot-scale and full-scale MTBE biobarrier systems. It is largely empirically based, although the design approach does rely on simple engineering calculations. The paradigm emphasizes gas injection–based oxygen delivery schemes, although many of the steps would be common to other methods of delivering oxygen to aquifers.  相似文献   
978.
The disastrous Wenchuan, Sichuan, earthquake (MS=8.0) on 12 May 2009 ruptured several major thrust faults of the Longmenshan fold-and-thrust belt, along the western margin of the Sichuan Basin.  相似文献   
979.
Previous process-oriented field studies of stream confluences have focused mainly on fluvial dynamics at or immediately downstream of the location where the confluent flows enter the downstream channel. This study examines in detail the spatial evolution of the time-averaged downstream velocity, cross-stream velocity, and temperature fields between the junction apex, where the flows initially meet, and the entrance to the downstream channel. A well-defined, vertically oriented mixing interface exists within this portion of the confluence, suggesting that lateral mixing of the incoming flows is limited. The downstream velocity field near the junction apex is characterized by two high-velocity cores separated by an intervening region of low-velocity or recirculating fluid. In the downstream direction, the high-velocity cores move inwards towards the mixing interface and high-velocity fluid progressively extends downwards into a zone of scour, resulting in an increase in flow velocity in the centre of the confluence. The cross-stream velocity field is dominated by flow convergence, but also includes a component associated with a consistent pattern of secondary circulation. This pattern is characterized by two surface-convergent helical cells, one on each side of the mixing interface. The helical cells appear to be the mechanism by which high-momentum fluid near the surface is advected downwards into the zone of scour. For transport-ineffective flows, the dimensions and intensities of the cells are controlled by the momentum ratio of the confluent streams and by the extant bed morphology within the confluence. Although the flow structure of formative events was not measured directly in this study, documented patterns of erosion and deposition within the central region of the confluence suggest that these events are dynamically similar to the measured flows, except for the fact that formative flows are not constrained by, but can reshape, the bed morphology. The results of this investigation are consistent with and augment previous findings on time-averaged flow structure in the downstream portion of the confluence. © 1998 John Wiley & Sons, Ltd.  相似文献   
980.
Over the past 200 years of written records, the Hawaiian Islands have experienced tens of tsunamis generated by earthquakes in the subduction zones of the Pacific ‘Ring of Fire’ (for example, Alaska–Aleutian, Kuril–Kamchatka, Chile and Japan). Mapping and dating anomalous beds of sand and silt deposited by tsunamis in low-lying areas along Pacific coasts, even those distant from subduction zones, is critical for assessing tsunami hazard throughout the Pacific basin. This study searched for evidence of tsunami inundation using stratigraphic and sedimentological analyses of potential tsunami deposits beneath present and former Hawaiian wetlands, coastal lagoons, and river floodplains. Coastal wetland sites on the islands of Hawai΄i, Maui, O΄ahu and Kaua΄i were selected based on historical tsunami runup, numerical inundation modelling, proximity to sandy source sediments, degree of historical wetland disturbance, and breadth of prior geological and archaeological investigations. Sand beds containing marine calcareous sediment within peaty and/or muddy wetland deposits on the north and north-eastern shores of Kaua΄i, O΄ahu and Hawai΄i were interpreted as tsunami deposits. At some sites, deposits of the 1946 and 1957 Aleutian tsunamis are analogues for deeper, older probable tsunami deposits. Radiocarbon-based age models date sand beds from three sites to ca 700 to 500 cal yr bp , which overlaps ages for tsunami deposits in the eastern Aleutian Islands that record a local subduction zone earthquake. The overlapping modelled ages for tsunami deposits at the study sites support a plausible correlation with an eastern Aleutian earthquake source for a large prehistoric tsunami in the Hawaiian Islands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号