首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1204篇
  免费   23篇
  国内免费   3篇
测绘学   25篇
大气科学   85篇
地球物理   264篇
地质学   428篇
海洋学   112篇
天文学   198篇
综合类   3篇
自然地理   115篇
  2020年   17篇
  2019年   9篇
  2018年   17篇
  2017年   11篇
  2016年   25篇
  2015年   23篇
  2014年   29篇
  2013年   56篇
  2012年   41篇
  2011年   53篇
  2010年   41篇
  2009年   54篇
  2008年   54篇
  2007年   51篇
  2006年   37篇
  2005年   41篇
  2004年   56篇
  2003年   45篇
  2002年   47篇
  2001年   25篇
  2000年   21篇
  1999年   17篇
  1998年   10篇
  1997年   18篇
  1996年   16篇
  1995年   25篇
  1994年   13篇
  1993年   20篇
  1992年   18篇
  1991年   18篇
  1990年   11篇
  1989年   15篇
  1988年   13篇
  1987年   20篇
  1986年   17篇
  1985年   20篇
  1984年   30篇
  1983年   28篇
  1982年   18篇
  1981年   18篇
  1980年   14篇
  1979年   13篇
  1978年   11篇
  1977年   14篇
  1976年   12篇
  1975年   10篇
  1974年   7篇
  1973年   11篇
  1972年   6篇
  1970年   11篇
排序方式: 共有1230条查询结果,搜索用时 687 毫秒
961.
Bubbles grow in decompressing magmas by simple expansion and by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate elements and isotopes (or isotopologues) of dissolved components. This raises the possibility that the character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the absence of equilibrium vapor/melt isotopic fractionation. Recent experiments have confirmed the existence of an isotope mass effect on diffusion of the volatile element Cl in silicate melt [Fortin et al. (Isotopic fractionation of chlorine during chemical diffusion in a dacitic melt and its implications for isotope behavior during bubble growth (abstract), 2016 Fall AGU Meeting, 2016)], so there is a clear need to understand the efficacy of diffusive fractionation during bubble growth. In this study, numerical models of diffusion and mass redistribution during bubble growth were implemented for both “passive” volatiles—those whose concentrations are generally well below saturation levels—and “active” volatiles such as CO2 and H2O, whose elevated concentrations and limited solubilities are the cause of bubble nucleation and growth. Both diffusive and convective bubble-growth scenarios were explored. The magnitude of the isotope mass effect on passive volatiles partitioned into bubbles growing at a constant rate R in a static system depends upon R/D L, K d and D H/D L (K d = bubble/melt partition coefficient; D H/D L = diffusivity ratio of the heavy and light isotopes). During convective bubble growth, the presence of a discrete (physical) melt boundary layer against the growing bubble (of width x BL) simplifies outcomes because it leads to the quick onset of steady-state fractionation during growth, the magnitude of which depends mainly upon R?x BL/D L and D H/D L (bubble/melt fractionation is maximized at R?x BL/D L ≈0.1). Constant R is unrealistic for most real systems, so other scenarios were explored by including the solubility and EOS of an “active” volatile (e.g., CO2) in the numerical simulations. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble. For volatile species whose isotope mass effects on diffusion have been measured (Cl, Li), predicted isotope fractionation in the exsolved vapor can be as large as ?4‰ for Cl and ?25‰ for Li.  相似文献   
962.
Estuarine tidal mudflats form unique habitats and maintain valuable ecosystems. Historic measurements of a mudflat in San Fancsico Bay over the past 150 years suggest the development of a rather stable mudflat profile. This raises questions on its origin and governing processes as well as on the mudflats’ fate under scenarios of sea level rise and decreasing sediment supply. We developed a 1D morphodynamic profile model (Delft3D) that is able to reproduce the 2011 measured mudflat profile. The main, schematised, forcings of the model are a constant tidal cycle and constant wave action. The model shows that wave action suspends sediment that is transported landward during flood. A depositional front moves landward until landward bed levels are high enough to carry an equal amount of sediment back during ebb. This implies that, similar to observations, the critical shear stress for erosion is regularly exceeded during the tidal cycle and that modelled equilibrium conditions include high suspended sediment concentrations at the mudflat. Shear stresses are highest during low water, while shear stresses are lower than critical (and highest at the landward end) along the mudflat during high water. Scenarios of sea level rise and decreasing sediment supply drown the mudflat. In addition, the mudflat becomes more prone to channel incision because landward accumulation is hampered. This research suggests that sea level rise is a serious threat to the presence of many estuarine intertidal mudflats, adjacent salt marshes and their associated ecological values.  相似文献   
963.
964.
965.
A generalized dual porosity method (GDPM) has been developed to incorporate sub-grid scale heterogeneity into large-scale flow and transport simulations. The method is spatially variable in the sense that the method can be applied with different levels of resolution for different spatial nodes in the simulation. The method utilizes the nodal connectivity structure and linear equation solvers of unstructured grids like those used in the finite element method, and can be applied to any problem without externally modifying the numerical grid. The algorithm scales linearly in CPU time and storage with the number of GDPM nodes. We demonstrate the utility and computational efficiency of the technique with two verification problems and an example problem of a field site.  相似文献   
966.
This article explores the length scales and statistical characteristics of form roughness along the outer banks of two elongate bends on a large meandering river through investigation of topographic variability of the bank face. The analysis also examines how roughness varies over the vertical height of the banks and when the banks are exposed subaerially and inundated during flood stage. Detailed data on the topography of the outer banks were obtained subaerially using terrestrial LiDAR during low flow conditions and subaqueously using multibeam echo sounding (MBES) during near‐bankfull conditions. The contributions of various length scales of topographic irregularity to roughness for subaerial conditions were evaluated for different elevation contours on the bank faces using Hilbert–Huang Transform (HHT) spectral analysis. Statistical characteristics for discrete areas on the bank faces were determined by calculating the root‐mean‐square of normal distances from a triangulated irregular network (TIN) surface. Results of the HHT analysis show that the characteristics of roughness along bank faces composed primarily of non‐cohesive sediment, and eroding into cropland, vary with bank elevation and exhibit a dominant range of roughness length scales (~15–50 m). However, bank faces composed predominantly of cohesive material and carved into a forested floodplain have relatively uniform topographic roughness characteristics over the vertical extent of the bank face and do not exhibit a dominant roughness length scale or range of length scales. Additionally, comparison between local surface roughness for subaerial versus subaqueous conditions shows that roughness decreases considerably when the banks are submerged, most likely because of the removal of vegetation and eradication of small‐scale erosional features in non‐cohesive bank materials by flow along the bank face. Thus, roughness appears to be linked to the hydraulic conditions affecting the bank, at least relative to conditions that develop when banks are exposed subaerially. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
967.
Due to growing concerns regarding persistent organic pollutants (POPs) in the environment, extensive studies and monitoring programs have been carried out in the last two decades to determine their concentrations in water, sediment, and more recently, in biota. An extensive review and analysis of the existing literature shows that whilst the vast majority of these efforts either attempt to compare (a) spatial changes (to identify "hot spots"), or (b) temporal changes to detect deterioration/improvement occurring in the environment, most studies could not provide sufficient statistical power to estimate concentrations of POPs in the environment and detect spatial and temporal changes. Despite various national POPs standards having been established, there has been a surprising paucity of emphasis in establishing accurate threshold concentrations that indicate potential significant threats to ecosystems and public health. Although most monitoring programs attempt to check compliance through reference to certain "environmental quality objectives", it should be pointed out that many of these established standards are typically associated with a large degree of uncertainty and rely on a large number of assumptions, some of which may be arbitrary. Non-compliance should trigger concern, so that the problem can be tracked down and rectified, but non-compliance must not be interpreted in a simplistic and mechanical way. Contaminants occurring in the physical environment may not necessarily be biologically available, and even when they are bioavailable, they may not necessarily elicit adverse biological effects at the individual or population levels. As such, we here argue that routine monitoring and reporting of abiotic and biotic POPs concentrations could be of limited use, unless such data can be related directly to the assessment of public health and ecological risks. Risk can be inferred from the ratio of predicted environmental concentration (PEC) and the predicted no effect concentration (PNEC). Currently, the paucity of data does not allow accurate estimation of PNEC, and future endeavors should therefore, be devoted to determine the threshold concentrations of POPs that can cause undesirable biological effects on sensitive receivers and important biological components in the receiving environment (e.g. keystone species, populations with high energy flow values, etc.), to enable derivation of PNECs based on solid scientific evidence and reduce uncertainty. Using the threshold body burden of POPs required to elicit damages of lysosomal integrity in the green mussel (Perna virvidis) as an example, we illustrate how measurement of POPs in body tissue could be used in predicting environmental risk in a meaningful way.  相似文献   
968.
Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCs) are generally present in the marine environment in complex mixtures. The ecotoxicological nature of contaminant interactions, however, is poorly understood, with most scientific observations derived from single contaminant exposure experiments. The objective of this experiment was to examine dose-response relationships between antioxidant parameters and body contaminant levels in mussels exposed to different exposure regimes under laboratory conditions. Accordingly, the green-lipped mussel, Perna viridis, was challenged with a mixture of PAHs (anthracene, fluoranthene, pyrene, benzo[a]pyrene) and OC pesticides (alpha-HCH, aldrin, dieldrin, p,p'-DDT) over a 4 week period. Contaminants were delivered under four different dosing regimes, with all treatments receiving the same total contaminant load by the end of the exposure period. Antioxidant biomarkers were measured after 1, 2, 3 and 4 weeks, including glutathione (GSH), gluathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and lipid peroxidase (LPO). GST and CAT were induced in hepatic tissues in most of the exposure regimes, with the majority of significant induction occurring in a constant exposure regime and a two-step alternate exposure regime. Significant differences among exposure regimes were detected in the body burden of contaminants after 28 days. Hepatic CAT and GSH are proposed as potentially useful biomarkers as they showed good correlation with target contaminants and were not readily affected by different dosing patterns.  相似文献   
969.
Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCs) are generally present in the marine environment in complex mixtures. The ecotoxicological nature of contaminant interactions, however, is poorly understood, with most scientific observations derived from single contaminant exposure experiments. The objective of this experiment was to examine dose-response relationships between antioxidant parameters and body contaminant levels in mussels exposed to different exposure regimes under laboratory conditions. Accordingly, the green-lipped mussel, Perna viridis, was challenged with a mixture of PAHs (anthracene, fluoranthene, pyrene, benzo[a]pyrene) and OC pesticides (α-HCH, aldrin, dieldrin, p,p′-DDT) over a 4 week period. Contaminants were delivered under four different dosing regimes, with all treatments receiving the same total contaminant load by the end of the exposure period. Antioxidant biomarkers were measured after 1, 2, 3 and 4 weeks, including glutathione (GSH), gluathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and lipid peroxidase (LPO). GST and CAT were induced in hepatic tissues in most of the exposure regimes, with the majority of significant induction occurring in a constant exposure regime and a two-step alternate exposure regime. Significant differences among exposure regimes were detected in the body burden of contaminants after 28 days. Hepatic CAT and GSH are proposed as potentially useful biomarkers as they showed good correlation with target contaminants and were not readily affected by different dosing patterns.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号