首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1204篇
  免费   23篇
  国内免费   3篇
测绘学   25篇
大气科学   85篇
地球物理   264篇
地质学   428篇
海洋学   112篇
天文学   198篇
综合类   3篇
自然地理   115篇
  2020年   17篇
  2019年   9篇
  2018年   17篇
  2017年   11篇
  2016年   25篇
  2015年   23篇
  2014年   29篇
  2013年   56篇
  2012年   41篇
  2011年   53篇
  2010年   41篇
  2009年   54篇
  2008年   54篇
  2007年   51篇
  2006年   37篇
  2005年   41篇
  2004年   56篇
  2003年   45篇
  2002年   47篇
  2001年   25篇
  2000年   21篇
  1999年   17篇
  1998年   10篇
  1997年   18篇
  1996年   16篇
  1995年   25篇
  1994年   13篇
  1993年   20篇
  1992年   18篇
  1991年   18篇
  1990年   11篇
  1989年   15篇
  1988年   13篇
  1987年   20篇
  1986年   17篇
  1985年   20篇
  1984年   30篇
  1983年   28篇
  1982年   18篇
  1981年   18篇
  1980年   14篇
  1979年   13篇
  1978年   11篇
  1977年   14篇
  1976年   12篇
  1975年   10篇
  1974年   7篇
  1973年   11篇
  1972年   6篇
  1970年   11篇
排序方式: 共有1230条查询结果,搜索用时 399 毫秒
221.
The Mount Wright Arc, in the Koonenberry Belt in eastern Australia, is associated with two early to middle Cambrian lithostratigraphic groups developed onto the Late Neoproterozoic volcanic passive margin of East Gondwana. The Gnalta Group includes a calc-alkaline basalt-andesite-dacite suite (Mount Wright Volcanics), interpreted to represent the volcanic component of the arc. Volcaniclastic Gnalta Group rocks now buried in the Bancannia Trough represent the continental back-arc, developed immediately behind the arc in a manner analogous to the modern Taupo Volcanic Zone of New Zealand. East of the Gnalta Group is the Ponto Group, a deep marine sedimentary package that includes tholeiitic lavas (Bittles Tank Volcanics) and felsic tuffs, interpreted as part of a fore-arc sequence. The configuration of these units suggests the Mount Wright Arc developed on continental crust in response to west-dipping subduction along the East Gondwana margin, in contrast with some models for Cambrian convergence on other sections of the Delamerian Orogen, which invoke east-dipping subduction and arc accretion by arc-continent collision.This convergent margin was deformed by the middle Cambrian Delamerian Orogeny, which involved initial co-axial shortening followed by sinistral transpression, and oroclinal folding around the edge of the Curnamona Province.  相似文献   
222.
A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10?5 m/d to 7.14 × 10?4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast–southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.  相似文献   
223.
This paper considers the problem of comparing the read time for a file containing an array of one-half million one-byte data values using a direct read time with the time required to read an equivalent XML file. The XML file uses a variable-length string encoding of the identifiers associated with each of the byte values. The XML file is about 180 times larger than the original file of byte values. Because the XML file is much larger and because the XML parsing requires substantially more computational work, reading the XML file on a Windows-based PC takes about 3,700 times longer than the direct read. The experimental study shows that the XML read time increases linearly with the size of the file. Given the increased read time and the increased probability of programming errors for the XML encoding, it appears that in cases where data archives are providing simple binary or text files of data that may be readily understood and read with short programs, then XML may not be an optimal choice for serving users or for preserving data.  相似文献   
224.
In recent years, a number of data identification technologies have been developed which purport to permanently identify digital objects. In this paper, nine technologies and systems for assigning persistent identifiers are assessed for their applicability to Earth science data (ARKs, DOIs, XRIs, Handles, LSIDs, OIDs, PURLs, URIs/URNs/URLs, and UUIDs). The evaluation used four use cases that focused on the suitability of each scheme to provide Unique Identifiers for Earth science data objects, to provide Unique Locators for the objects, to serve as Citable Locators, and to uniquely identify the scientific contents of data objects if the data were reformatted. Of all the identifier schemes assessed, the one that most closely meets all of the requirements for an Unique Identifier is the UUID scheme. Any of the URL/URI/IRI-based identifier schemes assessed could be used for Unique Locators. Since there are currently no strong market leaders to help make the choice among them, the decision must be based on secondary criteria. While most publications now allow the use of URLs in citations, so that all of the URL/URI/IRI based identification schemes discussed in this paper could potentially be used as a Citable Locator, DOIs are the identification scheme currently adopted by most commercial publishers. None of the identifier schemes assessed here even minimally address identification of scientifically identical numerical data sets under reformatting.  相似文献   
225.
We have compiled carbonate chemistry and sedimentary CaCO3% data for the deep-waters (>1500 m water depth) of the southwest (SW) Pacific region. The complex topography in the SW Pacific influences the deep-water circulation and affects the carbonate ion concentration ([CO32−]), and the associated calcite saturation horizon (CSH, where ??calcite=1). The Tasman Basin and the southeast (SE) New Zealand region have the deepest CSH at ∼3100 m, primarily influenced by middle and lower Circumpolar Deep Waters (m or lCPDW), while to the northeast of New Zealand the CSH is ∼2800 m, due to the corrosive influence of the old North Pacific deep waters (NPDW) on the upper CPDW (uCPDW). The carbonate compensation depth (CCD; defined by a sedimentary CaCO3 content of <20%), also varies between the basins in the SW Pacific. The CCD is ∼4600 m to the SE New Zealand, but only ∼4000 m to the NE New Zealand. The CaCO3 content of the sediment, however, can be influenced by a number of different factors other than dissolution; therefore, we suggest using the water chemistry to estimate the CCD. The depth difference between the CSH and CCD (??ZCSH−CCD), however, varies considerably in this region and globally. The global ??ZCSH−CCD appears to expand with increase in age of the deep-water, resulting from a shoaling of the CSH. In contrast the depth of the chemical lysocline (??calcite=0.8) is less variable globally and is relatively similar, or close, to the CCD determined from the sedimentary CaCO3%. Geochemical definitions of the CCD, however, cannot be used to determine changes in the paleo-CCD. For the given range of factors that influence the sedimentary CaCO3%, an independent dissolution proxy, such as the foraminifera fragmentation % (>40%=foraminiferal lysocline) is required to define a depth where significant CaCO3 dissolution has occurred back through time. The current foraminiferal lysocline for the SW Pacific region ranges from 3100-3500 m, which is predictably just slightly deeper than the CSH. This compilation of sediment and water chemistry data provides a CaCO3 dataset for the present SW Pacific for comparison with glacial/interglacial CaCO3 variations in deep-water sediment cores, and to monitor future changes in [CO32−] and dissolution of sedimentary CaCO3 resulting from increasing anthropogenic CO2.  相似文献   
226.
Vegetation changes associated with climate shifts and anthropogenic disturbance can have major impacts on biogeochemical cycling and soils. Much of the Great Basin, U.S. is currently dominated by sagebrush (Artemisia tridentate (Rydb.) Boivin) ecosystems. Sagebrush ecosystems are increasingly influenced by pinyon (Pinus monophylla Torr. & Frém and Pinus edulis Engelm.) and juniper (Juniperus osteosperma Torr. and Juniperus occidentalis Hook.) expansion. Some scientists and policy makers believe that increasing woodland cover in the intermountain western U.S. offers the possibility of increased organic carbon (OC) storage on the landscape; however, little is currently known about the distribution of OC on these landscapes, or the role that nitrogen (N) plays in OC retention. We quantified the relationship between tree cover, belowground OC, and total below ground N in expansion woodlands at 13 sites in Utah, Oregon, Idaho, California, and Nevada, USA. One hundred and twenty nine soil cores were taken using a mechanically driven diamond tipped core drill to a depth of 90 cm. Soil, coarse fragments, and coarse roots were analyzed for OC and total N. Woodland expansion influenced the vertical distribution of root OC by increasing 15-30 cm root OC by 2.6 Mg ha−1 and root N by 0.04 Mg ha−1. Root OC and N increased through the entire profile by 3.8 and 0.06 Mg ha−1 respectively. Woodland expansion influenced the vertical distribution of soil OC by increasing surface soil (0-15 cm) OC by 2.2 Mg ha−1. Woodland expansion also caused a 1.3 Mg ha−1 decrease in coarse fragment associated OC from 75-90 cm. Our data suggests that woodland expansion into sagebrush ecosystems has limited potential to store additional belowground OC, and must be weighed against the risk of increased wildfire and exotic grass invasion.  相似文献   
227.
The Australian Permian bivalves Megadesmus, Astartila, Pyramtis, and Myonia have previously been grouped in either the Family Pachydomidae (Fischer, 1887) or the Family Edmondiidae (King, 1850). Because of similarities in their musculature (in addition to those in dentition, micro‐ornament, and to some extent, shape) they can now be included in the same family as the deep‐burrowing bivalve Vacunella (previously Chaenomya). Vacunella is closely related to the living genus Pholadomya which has existed at least since the Mesozoic, and the two can be placed in the same family — Pholadomyidae (Fleming, 1828). Because of these similarities between Pholadomya, Vacunella, and the “Pachydomidae” it seems likely that the middle and upper Palaeozoic edmondioid bivalves gave rise to the Mesozoic and Cainozoic pholadomyoids, and that these two groups together constitute a major division of the Class Bivalvia — a division that may have been relatively distinct since Ordovician time.  相似文献   
228.
Pb, Hf, Nd and Sr isotopes of basaltic lavas from the two Réunion Island volcanoes are reported in order to examine the origin of the sources feeding these volcanoes and to detect possible changes through time. Samples, chosen to cover the whole lifetime of the two volcanoes (from 2 Ma to present), yield a chemically restricted (compared to OIB lavas) but complex distribution. Réunion plume isotopic characteristics have been defined on the basis of the composition of uncontaminated shield-building lavas from the Piton de la Fournaise volcano. The average ?Nd, ?Hf, 87Sr/86Sr and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb isotope ratios calculated for this component are + 4.4, + 9.1, 0.70411, 18.97, 15.59 and 39.03, respectively. In Pb–Pb isotope space, each volcano defines a distinct linear trend but slight variations are also detected within the various volcanic sequences. The Piton des Neiges volcano yields a distinct and significantly more scattered isotopic distribution than Piton de la Fournaise for both Pb, Hf and Nd isotope tracers. A principal component analysis of the Pb isotope data from Piton de la Fournaise reveals a major contribution of the C and EM-1 components (with a clear Dupal flavor) as main components for the modern Réunion plume. The same components have been identified for Piton des Neiges but with a stronger participation of a depleted mantle component and a weaker EM-1 contribution. The compositional change of the lavas erupted by the Piton des Neiges and Piton de la Fournaise volcanoes is attributed to the impingement of two small-scale blobs of plume material at the base of the Réunion lithosphere. Compared to other hot-spots worldwide, in particular Hawaii and Kerguelen, magmas beneath Réunion are generated from a considerably more homogeneous, compositionally more primitive plume higher in 206Pb. Although shallow-level contamination processes have been locally detected they did not alter significantly the composition of the plume magmas. This is tentatively attributed to mantle dynamics producing small, high-velocity blobs that ascend rapidly through the lithosphere, and to the lack of a well-developed magma chamber at depth in the lithosphere.  相似文献   
229.
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号