首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   5篇
  国内免费   2篇
测绘学   6篇
大气科学   42篇
地球物理   14篇
地质学   78篇
海洋学   2篇
天文学   23篇
自然地理   3篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   9篇
  2017年   14篇
  2016年   8篇
  2015年   12篇
  2014年   11篇
  2013年   17篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   8篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1998年   6篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   2篇
  1973年   2篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
61.
Six soil samples from various depths of the Luna 24 drill core column have been analysed for their particle track records and light noble gas compositions. The observed particle track records indicate higher degree of maturity for the upper zone (~1 m) of this regolith column as compared to the soils in the lower zone (~0.4 m). The cosmogenic21Ne concentrations decrease rapidly with depth to 1 m, after which the concentrations level off or increase slightly. These data suggest a multi-stage depositional history for this drill core soil column consisting of: (1) rapid deposition of regolith material, (2) a cratering event about 400 m.y. B.P., leading to excavation to a depth of ~1 m from the present regolith surface, (3) a relatively rapid fill up of the crater with near-surface irradiated material, and (4) in-situ irradiation during the last about 250–300 m.y. Such a depositional sequence can also explain the observed lack of correlation between different surface exposure-correlated maturity indices in these drill core soil samples.  相似文献   
62.
63.
We discuss the possible stellar sources of short-lived radionuclides (SLRs) known to have been present in the early solar system (26Al, 36Cl, 41Ca, 53Mn, 60Fe, 107Pd, 129I, 182Hf, 244Pu). SLRs produced primarily by irradiation (7Be, 10Be) are not discussed in this paper. We evaluate the role of the galactic background in explaining the inventory of SLRs in the early solar system. We review the nucleosynthetic processes that produce the different SLRs and place the processes in the context of stellar evolution of stars from 1 to 120 M. The ejection of newly synthesized SLRs from these stars is also discussed. We then examine the extent to which each stellar source can, by itself, explain the relative abundances of the different SLRs in the early solar system, and the probability that each source would have been in the right place at the right time to provide the SLRs. We conclude that intermediate-mass AGB stars and massive stars in the range from ∼20 to ∼60 M are the most plausible sources. Low-mass AGB stars fail to produce enough 60Fe. Core-collapse Type II supernovae from stars with initial masses of <20 M produce too much 60Fe and 53Mn. Sources such as novae, Type Ia supernovae, and core-collapse supernovae of O-Ne-Mg white dwarfs do not appear to provide the SLRs in the correct proportions. However, intermediate-mass AGB stars cannot provide 53Mn or the r-process elements, so if an AGB star provided the 41Ca, 36Cl, 26Al, 60Fe, and 107Pd, and if a late stellar source is required for 53Mn and the r-process elements, then two types of sources would be required. A separate discussion of the production of r-process elements highlights the difficulties in modeling their production. There appear to be two sources of r-process elements, one that produces the heavy r-process elements, including the actinides, and one that produces the elements from N to Ge and the elements ∼110 < A < ∼130. These can be assigned to SNII explosions of stars of ?11 M and stars of 12-25 M, respectively. More-massive stars, which leave black holes as supernova remnants, apparently do not produce r-process elements.  相似文献   
64.
The long period classical cepheid RZ Vel (HD 73502) is known to be a member of an OB association, Vel OB1 in Vela, and a high metallicity is ascribed to it by the photometric work of Eggen (1982). We have done an abundance analysis for this long period (P = 20.4 days) and hence young (age ≈ 1.80×107 yr) classical cepheid using high resolution CCD spectra with good S/N ratio. We have used a detailed model atmosphere method to derive the abundances of the light elements C, O, A1, S and of many Fe-peak elements and a few s-process elements. Our present work indicates near solar abundance for most of the elements for RZ Vel and hence we do not confirm the high metallicity derived photometrically by Eggen (1982) for this star  相似文献   
65.
The energy spectra of primary cosmic rays were studied in the energy interval 150 to 450 MeV/nucl by using balloon-borne cellulose-nitrate solid-state plastic detector. Effects of solar modulation were studied using the theoretical spectrum ofH 1 nuclei near the solar minimum in 1964 as the demodulated spectrum. The ‘force-field’ potential which fit the experimental results was estimated to be 270 MeV/nucl.  相似文献   
66.
Nucleation properties of different alcoholic solutions of Benzoin and Benzoin dust have been studied by varying the seeding temperature in a laboratory Cold Chamber. In the present study, three different alcoholic solutions are being used and these are due to the standard Ethyl alcohol, one higher alcohol i.e. Isopropyle alcohol and one lower alcohol i.e. Methyl alcohol. In addition, Benzil dust and droplets of Acetone and Chloroform have been used to examine if these agents have any ice nucleation ability. It has been observed that all alcoholic solutions of Benzoin have sufficient ice nucleation ability at the negative side of 0°C, with the maximum concentration occurring at −14.4°C. In case of Benzoin dust, the nucleation ability is better on the positive side of 0°C than the negative side. On the other hand, Benzil dust has insignificant nucleation ability and the droplets of two other agents have no nucleation ability at all.Considering the chemical as well as crystalline structure, one can conclude that the presence of OH group in the seeding molecule plays the central role in ice nucleation/hydrate crystal formation. In fact, a number of supplementary experiments like crystal growth in an incubator, XRD analysis and NMR study are performed to identify the nature of crystals formed by Benzoin dust above 0°C. One can conclude that these are hydrate crystals of Benzoin with water caging around Benzoin crystals.  相似文献   
67.
Here, we provide evidence suggesting that marine (diatom) opal contains not only a high fidelity record of dissolved oceanic concentrations of cosmic ray-produced radionuclides, 10Be and 26Al, but also a record of temporal variations in a large number of trace elements such as Ti, Fe, Zn and Mn. This finding is derived from measurements in purified biogenic opal that can be separated from detrital materials using a newly developed technique based on surface charge characteristics. Initial results from a sediment core taken near the present-day position of the Antarctic Polar Front (ODP Site 1093) show dramatic changes in the intrinsic concentrations of, Be, Al, Ti, Fe, Mn and Zn in the opal assemblages during the past ∼140 kyr BP. The results imply appreciable climatically controlled fluctuations in the level of bioreactive trace elements. The time series of total Be, Al, Ti, Fe and 10Be in the sediment core are all well correlated with each other and with dust records in the polar ice cores. The observations suggest that a significant flux of these trace metals to oceans is contributed by the aeolian dust, in this case, presumably from the Patagonia. This observation also allows determination of fluxes of dust-contributed 10Be to the Antarctica ice sheets. However, our data show that the relationships among the various metals are not perfectly linear. During periods of higher dissolved concentrations of trace elements (indicated by Fe and Ti) the relative concentrations of bioreactive elements, Be, Al, Mn and Zn are decreased. By contrast, the Fe/Zn and Fe/Mn ratios decrease significantly during each transition from cold to warm periods. The relative behavior could be consistent with any of the following processes: (i) enhanced biological productivity due to greater supply of the bioreactive elements (e.g. Zn) during cold periods (ii) increased biological and inorganic scavenging of particle active elements (e.g. Be and Al) during early interglacial periods (iii) differential uptake/removal of the metals by the various diatom taxa whose relative productivity or growth rate changes with large scale climate. In any case, with one sedimentary phase and in single sedimentary sections, we now have the potential to compare directly a proxy for aeolian input of micronutrients (e.g. Fe or Ti), with a proxy for production (e.g. 26Al/Al ratios). We expect that studies of the temporal records of trace elements and cosmogenic nuclides in contrasting regions of upwelling and productivity, which exhibit different sensitivities to global climate fluctuations and micronutrient inputs, would lead to a direct and comprehensive test of ideas such as the hypothesis of iron control of atmospheric carbon dioxide [Martin, J.H., 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography5, 1-13]. Our present data from a single site do not show that increases in dissolved Fe concentrations, per se, were responsible for increased biological productivity. However, a much clearer picture of the effect of increased dust fluxes should emerge when we have data for trace elements and the cosmogenic nuclides, 10Be and 26Al from various oceanic provinces.  相似文献   
68.
Rajesh  P. V.  Goswami  B. N. 《Climate Dynamics》2020,55(9-10):2645-2666

A better understanding of the drivers and teleconnection mechanisms responsible for the multi decadal mode (MDM) of variability of the Indian summer monsoon rainfall (ISMR) with major socio-economic impacts in the region through clustering of large-scale floods or droughts is key to improving the poor simulation of ISMR MDM by most climate models. Here, using the longest instrumental record of ISMR available (1813–2006) and longest atmospheric and oceanic re-analyses, the global four dimensional (space–time) structures of atmospheric and oceanic fields of the multi-decadal mode of ISMR and sub-seasonal evolution of the teleconnection mechanism are brought out, essential for understanding underlying drivers but lacking so far. The relationships between the spatial structure of winds, Sea Surface Temperature (SST) and thermocline depth with the ISMR MDM indicate that the tropical ocean over the Indo-Pacific domain is passive responding primarily to the surface winds associated with the mode. A close association between the Atlantic Meridional Overturning Circulation (AMOC), north Atlantic (NA) SST, NA sea surface salinity (SSS) and the ISMR MDM indicate a slow oceanic pathway linking NA SST and the ISMR. In addition to strong correlation (~ 0.9) between global spatial patterns of JJAS SST associated with the MDMs of ISMR, NA SST and AMOC, strong temporal coherence (correlations ~ 0.9) between them is suggestive of regulation of the ISMR MDM (T ~ 65-years) by the NA SST associated with the Atlantic Multidecadal Oscillation (AMO) through a ‘fast’ atmospheric bridge. On a seasonal time scale, the atmospheric bridge manifests in the form of a stationary Rossby wave train generated by an anticyclonic (cyclonic) barotropic vorticity located above positive (negative) SST anomaly over NA in two phases of the AMO. That the AMO SST is the driver of the ISMR MDM is further supported when we unravel the sub-seasonal face of the teleconnection between the two. We show that phase locking of active (break) spells with annual cycle during positive (negative) phases of the ISMR MDM are forced by a similar phase locking of barotropic anticyclonic (cyclonic) vorticity over the NA SST with the annual cycle through the generation of a quasi-stationary Rossby wave train with an anticyclonic (cyclonic) vorticity at upper level over the Indian region with the NA columnar vorticity leading Indian monsoon rainfall by about a week. Our findings provide a basis for enhanced predictability of tropical climate through slow modulation by extra-tropical SST.

  相似文献   
69.
70.
Indian region is severely affected by the tropical cyclones (TCs) due to the long coast line of about 7500 km. Hence, whenever any low level circulation (LLC) forms over the Indian Seas, the prediction of its intensification into a TC is very essential for the management of TC disaster. Satellite Application Centre (SAC) of Indian Space Research Organization (ISRO), Ahmedabad, has developed a technique to predict TCs based on scatterometer-derived winds from the polar orbiting satellite, QuikSCAT and Oceansat-II. The India Meteorological Department (IMD) has acquired the technique and verified it for the years 2010–2013 for operational use. The model is based on the concept of analogs of the sea surface wind distribution at the stage of LLC or vortex (T1.0) as per Dvorak’s classifications, which eventually leads to cyclogenesis (T2.5). The results indicate that the developed model could predict cyclogenesis with a probability of detection of 61% and critical success index of 0.29. However, it shows high over-prediction of the model is better over the Bay of Bengal than over Arabian Sea and during post-monsoon season (September–December) than in pre-monsoon season (March–June).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号