首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25220篇
  免费   217篇
  国内免费   709篇
测绘学   1426篇
大气科学   2015篇
地球物理   4644篇
地质学   11836篇
海洋学   1067篇
天文学   1704篇
综合类   2166篇
自然地理   1288篇
  2024年   5篇
  2023年   6篇
  2022年   3篇
  2021年   3篇
  2020年   14篇
  2019年   10篇
  2018年   4773篇
  2017年   4049篇
  2016年   2595篇
  2015年   251篇
  2014年   99篇
  2013年   55篇
  2012年   1012篇
  2011年   2759篇
  2010年   2048篇
  2009年   2351篇
  2008年   1926篇
  2007年   2390篇
  2006年   72篇
  2005年   227篇
  2004年   428篇
  2003年   433篇
  2002年   273篇
  2001年   62篇
  2000年   59篇
  1999年   23篇
  1998年   38篇
  1997年   4篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   7篇
  1984年   15篇
  1983年   6篇
  1982年   7篇
  1981年   26篇
  1980年   23篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   9篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Soil erosion by water has been a major problem since man introduced agriculture in the landscape. Soil erosion is a common hazard which is steadily increasing as a result of human activities in many parts of the world. Hunter Valley of NSW is located in subtropical eastern Australia. The region is known for its diversity in landscape that includes wide floodplains, extensive estuarine wetlands, undulating country, escarpments and rugged sandstone gorges. The region is also well known for wine production. The Hunter Valley has a long history of soil erosion following the European settlement 150 years ago. Currently there have been renewed human activities in the south central part of the region for coal mining, leading to clearance of vegetation and disturbance of soil. The present study addresses the issue of soil erosion in a part of Hunter Region by employing the Revised Universal Soil Loss Equation (RUSLE, Renard et al., 1977) model. The results indicate that the average annual soil loss from the area is 0.7 kg/m2/year, which is well beyond the tolerance limit of the soil. Statistical relationships between soil loss and each parameter of the RUSLE equation were obtained and it was found that C factor has significant influence on the average soil loss in the area. An overall picture that emerges out of the study is that the region is continuing to suffer as a result of disturbance in natural environment from the historical times till present.  相似文献   
962.
The 3rd Regional Symposium on Landslides in the Adriatic-Balkan Region (3rd ReSyLAB) was held in Ljubljana, Slovenia, from June 11 to 13, 2017, with 70 participants from nine countries (Austria, Bosnia and Hercegovina, Croatia, Czech Republic, Italy, Republic of Macedonia, Serbia, Slovenia, Spain)—scientists, engineers, researchers, students, experts, politicians, and other decision-makers working in the area of landslide risk reduction in the region. The ReSyLAB is a biannual event organized by the Adriatic-Balkan Network of the International Consortium on Landslides (ICL ABN). Being an important form of activities of this ICL regional network comprising of six ICL members from four countries, it was also a contribution of the International Consortium on Landslides (ICL) to the implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030. This article reports on the main outcomes of the 3rd ReSyLAB Symposium. Altogether, 41 abstracts were published in the symposium book of abstracts, and the symposium proceedings with over 20 reviewed full papers are under preparation to be printed early in 2018. During the 3rd ReSyLAB, a five invited keynote lectures have been presented, and 28 oral presentations are given to the audience. An important part of the symposium was a Round Table entitled “Enhancing cooperation between landslide research community and end users.” On the last day of the symposium, over 30 experts participated in two post-symposium study tours in Slovenia.  相似文献   
963.
Stress mobilisation and deformation of a slope are important for engineers to carry out reliable design of retaining systems. However, most case histories reported mainly on the response of pore water pressure (PWP), whereas knowledge about the stress deformation characteristics of slope is limited. In this study, a saprolitic soil slope was instrumented to monitor not only the responses of PWP but also horizontal stress and horizontal displacement. To assist in the interpretation of field data, a series of laboratory tests was conducted to characterise volume change behaviour of the soil taken from the site, under the effects of both net stress and suction. During a rainstorm event when positive PWP built up, a remarkably large displacement of 20 mm was recorded between 5.5- and 6-m depths, and the top 5 m of the slope exhibited translational downslope movement. This caused an increase in Bishop’s effective horizontal stress by 350 %, which reached a peak value close to 40 % of a Bishop’s effective passive stress. During the subsequent dry season when suction was recovered, an upslope rebound of 10 mm was recorded. Comparison of field and laboratory data reveals that the rebound was attributed to suction-induced soil shrinkage. This rebound led to a decrease in the Bishop’s effective horizontal stress previously built up during the storm event.  相似文献   
964.
  总被引:1,自引:0,他引:1  
Against a background of crude oil shortage and low-carbon economy, optimization and simplification of oil–gas gathering and transporting play an indispensable role in efficient development of oilfield. Profit from the high efficient utilization of the produced liquid self-energy, single-pipe non-heating gathering and transporting process has been recognized in polymer flooding wells of Daqing oilfield (China). However, it is also facing the challenges of deposition, partial blockage, high wellhead pressure, production fluctuation and environment management. A field investigation of the application for the non-heating process and the variation of polymer flooding wellhead pressure were recently carried out. The flow patterns of the oil, water and gas mixture in single-pipe process were identified, and the locations where the gel deposition was most likely to occur were estimated. Deposition inhibitions and removal processes were practiced, and the operation parameters under different working conditions were optimized. The results indicated that single-pipe non-heating process could reduce 20% of the investment and 30% of the running cost and could also make the wellhead pressure of some wells exceed the maximum allowable operating pressure of oil gathering pipelines. There appears to be a proportional relationship among water content, flow rate, residual polymer concentration and gel deposition behavior in a certain range of gathering radius. The gel deposition rate of the produced liquid with polymer concentration of higher than 600 mg/L and the water content of 90.5% reached 0.1154 mm/h in the coldest climate under the normal flow rate of 85 t/d, and the theoretical pigging period was <10 days. Gelation nucleation which was related to emulsification was induced by the transition and coexistence of separated flow and dispersed flow in non-heating gathering pipelines. The main deposition located on the beginning of pipelines, manifold, valve and elbow, and wellhead pressure of 350 psi was created in the test period of 20 days. Although using chemical inhibition method could still obtain a drag reduction rate of more than 25% under crude oil gelation temperature, the fact of the centralization disability of wellhead dosing facilities and the potential threat of chemical inhibitors to the environment could not be ignored. The noticeable energy consumption and potential risks of pipeline restarting may be encountered using facilities improvement and sphere pigging operation in gel deposition behavior treatment. A relation schema which could be used to predict deposition rate and extract thermal flush period according to the actual working condition was established. The successful application of the non-heating gathering and transporting process combated the traditional view that heat tracing is essential for maintaining the surface process in extremely cold area. Furthermore, the results contributed to the existing literature in establishing subsurface and surface parts integration idea for a green field development and accelerate further application of non-heating gathering and transporting process.  相似文献   
965.
Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu–Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (∼400–550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (∼550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid–melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.  相似文献   
966.
    
Propagation of seismic waves through soil layers would drastically change the frequency content and amplitude-based features of ground motions at the surface. These alterations are known as seismic site effects. Computation of site effects of high-populated areas such as large cities is of great importance (e.g., it is used in development of seismic microzonation of a region). Shiraz is one of the most populous cities of Iran and is located in a high seismic hazardous region. A representative clay site in this city is selected to assess local site effects. The time series and random vibration theory procedure in the frequency domain are implemented to analyze the aforementioned site. Furthermore, the nonlinear dynamic soil behavior is simulated by the equivalent linear method and the nonlinear method via DEEPSOIL program. Three types of soil column uncertainties such as shear wave velocity, modulus reduction, and damping ratio of soil layers as well as depth of underlying rock half-space (D bed) are considered herein. The mean amplification and standard deviation of natural logarithm of amplification factors are computed for a variety of analysis types. The results of the current study show that the computed mean and standard deviation of amplification factor in ln units by considering only V S uncertainty are in good agreement with the corresponding ones by considering V S and modulus reduction and damping ratio variabilities simultaneously for the studied site. Furthermore, it seems that the effect of bedrock depth in definition of spectral shapes of the Iranian seismic building code should be taken into account.  相似文献   
967.
Precipitation is a major climatic element with high spatial variations. Temporal and spatial variations may differ in large and small scales. It is, therefore, of utmost importance to study areas with similar gradients in terms of precipitation patterns in order to shed light on the complexities of precipitation variations. In the present study, attempts were made to identify areas with similar gradients experiencing the same precipitation pattern over a 50-year period (1964–2013). To this end, data were collected from synoptic stations in Iran in two phases (i.e., 1434 stations in the first phase and 673 stations in the second one). Alexanderson’s technique was adopted to examine sudden changes in precipitation patterns. The results showed that five regions with similar gradients could be identified in terms of precipitation patterns: negative and high variations, negative and moderate variations, positive and high variations, positive and moderate variations, and little or no variations. The distribution of such regions indicated that the regions with positive trends experienced more annual variations and had further spatial distribution. Furthermore, the findings revealed that the regions with negative precipitation patterns experienced more sudden changes in comparison with those with positive precipitation patterns. Additionally, more variations were observed in the precipitation patterns in recent years.  相似文献   
968.
We herein present source parameters and focal mechanism of a rare cratonic upper crustal earthquake of Mw4.0, which occurred at 8 km depth (centroid depth) below a region near Deogarh, Jharkhand. For our study, we used broadband waveform data from a seismic network of 15 three-component seismographs in the eastern Indian craton. The average seismic moment, moment magnitude and source radius are estimated to be 1.1 × 1015 N-m, 4.0 and 180.6 m, respectively. The high average stress drop of 14.27 MPa could be attributed to its lower-crustal origin. The mean corner frequency is calculated to be 4.1 Hz. To study the source mechanism, we perform a deviatoric constrained full waveform moment tensor inversion of multiple point sources on the band-passed (0.06 – 0.14 Hz) broadband displacement data of the Deogarh event, using ISOLA software. The best fit is obtained for the source at 8 km centroid depth, with a moment magnitude 3.7, and a right-lateral strike-slip mechanism with strike 162°, dip 72° and rake 169°. The P-axis orients N24°E, which is parallel to the direction of the absolute plate motion direction of Indian plate, while T-axis orients E-W, which is parallel to the strike of the pre-existing Damodar Graben (DG) of Gondwana age. The occurrence of this earthquake is attributed to the neotectonic reactivation of a fault associated with the E-W trending DG shear zone.  相似文献   
969.
The objectives of this paper are to examine the extent of human injuries caused by Cyclone Sidr, which made landfall in Bangladesh coast on November 15, 2007, and report on the circumstances, type and causes of injuries, along with selected risk factors associated with such injuries. Relevant data was collected through a questionnaire survey administered among the cyclone victims. Semi-structured interviews with key personnel were also conducted to obtain information regarding the circumstances causing injuries and public response to care for the injured. The questionnaire survey data reveals that among the respondent families, 132 persons sustained various types of injuries. Since the respondent families comprised of 1,443 members, the injury rate was 9.15%. All injured victims were treated either onsite or in local hospitals. The most common types of injuries were soft-tissue injuries (cuts, bruises, and scrapes) and fracture/dislocations. The most common causes of injuries for survivors were associated with falling trees. Analysis of risk factors reveals that age is significantly correlated with injuries. Both formal and informal interviews suggest that injured persons and their family members were in general pleased with medical response they received from various sources. Several recommendations have been suggested to reduce future cyclone-related injuries in Bangladesh.  相似文献   
970.
The occurrence of disasters such as extreme flooding in urban environments has severe consequences, not only on the human population but also on critical infrastructures such as the road networks, which are of vital importance for everyday living and particularly for emergency response. In this article, our main goal is to present-conceptually and in praxis-a model that could be used from the emergency responders for timely and efficient emergency management and response in an urban complex environment. For the city of Cologne in Germany, we aim to indicate possible ways to decrease the emergency response time during an extreme flood scenario through the development of an accessibility indicator, which consists of different components. Therefore, we will investigate the opportunities that occur, in a flood risk scenario, from the use of geographic information in different forms such as Volunteered Geographic Information (VGI) and open-source data in an ArcGIS environment, to increase urban resilience through the decreasing emergency response time. We will focus on network analysis for the fire brigades (first acting emergency responders) during a flood scenario to calculate their emergency response ranges and emergency response routes through flooded road networks, for the assistance of the possibly affected hospitals, refugee homes and fire brigades, which can be flooded. At the end of the paper, we suggest that the vulnerable community of the refugees could be taken into consideration as a new source of VGI, as an additional component that would lead to the decrease in the emergency response time. The geo-located information that could be provided by the refugee community can be very useful in emergency situations, such as those examined in this article where timely information can be forwarded to the proper authorities for a more focused and timely emergency response, increasing the resilience of the urban population and their community.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号