首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2838篇
  免费   75篇
  国内免费   51篇
测绘学   290篇
大气科学   259篇
地球物理   537篇
地质学   1291篇
海洋学   138篇
天文学   341篇
综合类   48篇
自然地理   60篇
  2023年   17篇
  2022年   53篇
  2021年   63篇
  2020年   62篇
  2019年   65篇
  2018年   247篇
  2017年   236篇
  2016年   217篇
  2015年   129篇
  2014年   195篇
  2013年   253篇
  2012年   161篇
  2011年   158篇
  2010年   136篇
  2009年   136篇
  2008年   120篇
  2007年   76篇
  2006年   70篇
  2005年   55篇
  2004年   38篇
  2003年   31篇
  2002年   25篇
  2001年   19篇
  2000年   30篇
  1999年   21篇
  1998年   16篇
  1997年   20篇
  1996年   12篇
  1995年   12篇
  1994年   22篇
  1993年   14篇
  1992年   7篇
  1991年   29篇
  1990年   19篇
  1989年   15篇
  1988年   11篇
  1987年   21篇
  1986年   14篇
  1985年   15篇
  1984年   15篇
  1983年   6篇
  1982年   9篇
  1981年   6篇
  1980年   9篇
  1979年   11篇
  1978年   6篇
  1975年   6篇
  1974年   11篇
  1972年   9篇
  1971年   7篇
排序方式: 共有2964条查询结果,搜索用时 11 毫秒
381.
We assessed current status of multi-model ensemble (MME) deterministic and probabilistic seasonal prediction based on 25-year (1980–2004) retrospective forecasts performed by 14 climate model systems (7 one-tier and 7 two-tier systems) that participate in the Climate Prediction and its Application to Society (CliPAS) project sponsored by the Asian-Pacific Economic Cooperation Climate Center (APCC). We also evaluated seven DEMETER models’ MME for the period of 1981–2001 for comparison. Based on the assessment, future direction for improvement of seasonal prediction is discussed. We found that two measures of probabilistic forecast skill, the Brier Skill Score (BSS) and Area under the Relative Operating Characteristic curve (AROC), display similar spatial patterns as those represented by temporal correlation coefficient (TCC) score of deterministic MME forecast. A TCC score of 0.6 corresponds approximately to a BSS of 0.1 and an AROC of 0.7 and beyond these critical threshold values, they are almost linearly correlated. The MME method is demonstrated to be a valuable approach for reducing errors and quantifying forecast uncertainty due to model formulation. The MME prediction skill is substantially better than the averaged skill of all individual models. For instance, the TCC score of CliPAS one-tier MME forecast of Niño 3.4 index at a 6-month lead initiated from 1 May is 0.77, which is significantly higher than the corresponding averaged skill of seven individual coupled models (0.63). The MME made by using 14 coupled models from both DEMETER and CliPAS shows an even higher TCC score of 0.87. Effectiveness of MME depends on the averaged skill of individual models and their mutual independency. For probabilistic forecast the CliPAS MME gains considerable skill from increased forecast reliability as the number of model being used increases; the forecast resolution also increases for 2 m temperature but slightly decreases for precipitation. Equatorial Sea Surface Temperature (SST) anomalies are primary sources of atmospheric climate variability worldwide. The MME 1-month lead hindcast can predict, with high fidelity, the spatial–temporal structures of the first two leading empirical orthogonal modes of the equatorial SST anomalies for both boreal summer (JJA) and winter (DJF), which account for about 80–90% of the total variance. The major bias is a westward shift of SST anomaly between the dateline and 120°E, which may potentially degrade global teleconnection associated with it. The TCC score for SST predictions over the equatorial eastern Indian Ocean reaches about 0.68 with a 6-month lead forecast. However, the TCC score for Indian Ocean Dipole (IOD) index drops below 0.40 at a 3-month lead for both the May and November initial conditions due to the prediction barriers across July, and January, respectively. The MME prediction skills are well correlated with the amplitude of Niño 3.4 SST variation. The forecasts for 2 m air temperature are better in El Niño years than in La Niña years. The precipitation and circulation are predicted better in ENSO-decaying JJA than in ENSO-developing JJA. There is virtually no skill in ENSO-neutral years. Continuing improvement of the one-tier climate model’s slow coupled dynamics in reproducing realistic amplitude, spatial patterns, and temporal evolution of ENSO cycle is a key for long-lead seasonal forecast. Forecast of monsoon precipitation remains a major challenge. The seasonal rainfall predictions over land and during local summer have little skill, especially over tropical Africa. The differences in forecast skills over land areas between the CliPAS and DEMETER MMEs indicate potentials for further improvement of prediction over land. There is an urgent need to assess impacts of land surface initialization on the skill of seasonal and monthly forecast using a multi-model framework.  相似文献   
382.
This paper presents a participatory approach to investigate vulnerability and adaptive capacity to climate variability and water stress in the Lakhwar watershed in Uttarakhand State, India. Highly water stressed microwatersheds were identified by modelling surface runoff, soil moisture development, lateral runoff, and groundwater recharge. The modelling results were shared with communities in two villages, and timeline exercises were carried out to allow them to trace past developments that have impacted their lives and livelihoods, and stimulate discussion about future changes and possible adaptation interventions.  相似文献   
383.
384.
The major part of the Peninsular Gneiss in Dharwar craton is made up of Trondjhemite-Tonalite-Granodiorite (TTG) emplaced at different periods ranging from 3.60 to 2.50 Ga. The sodic-silicic magma precursors of these rocks have geochemical features characteristic of partial melting of hydrated basalt. In these TTGs, enclaves of amphibolites (± garnet) are abundant. These restites are considered to be the residue of a basaltic crust after its partial melting. A detailed study of these (residue) enclaves reveals textures formed due to the process of partial melting. Major, trace and REE analysis of these residue enclaves and the melt TTGs and microprobe analysis of the coexisting minerals show partitioning of REE and HFSE between the precursor melt of TTGs and the upper amphibolite facies residues. Formation of garnetiferous amphibolites with biotite, Cpx and plagioclase consequent to melting, has squeezed the original MORB type of basaltic crust and given rise to the TTGs, depleted in Y, Yb, K2O, MgO, FeO, TiO2 and enriched in La, Th, U, Zr and Hf. Coevally during the process of melting, the hydrated basalt was depleted in Na2O, Al2O3, LREE, Th, U and enriched in K2O, MgO, Nb, Ti, Yb, Y, Sc, Ni, Cr and Co. Mineral chemistry of co-existing garnet-biotite and amphibole-plagioclase in these amphibolitic (restite) enclaves indicates an average temperature of 700 ± 50° C and pressure of 5 ± 1 Kbar. These data are inferred to indicate that during the garnet stability field metamorphism, effective fractionation of HREE and HFSE has taken place between the restites having Fe-Mg silicates, ilmenites and the extracted melt generated from the MORB type of hydrated basalt. These results are strongly substantiated by the reported melting experiments on hydrated basalts.  相似文献   
385.
Exploration and exploitation of coal seams is one of the major resources for the energy sector in any country but at the same time water filled voids/water logged areas in the old workings of these seams are very critical problems for the coal mining industry. In such situations, disasters like inundation, landslides, collapsing of the old seams may occur. In this regard, it is necessary to find out the water saturated/water filled voids and zones in the mining areas. Since no established technique is available to find such zones, an experimental study using Electrical Resistivity Imaging (ERI) has been carried out in one of the coal mining areas near Dhanbad, to find out the feasibility of finding the barrier thickness and the water logged area in underground coal mines. The area under study forms part of Jharia coalfield in Dhanbad district, Jharkhand state. The coal bearing rocks of Barakar Formation of Lower Permian age (Gondwana period) occur in the area under a thin cover (10 m to15 m) of soil and or alluvium. Coal bearing Barakar Formations consist mainly of sandstone of varying grain size, intercalation of shale and sandstone, grey and carbonaceous-shale and coal seams. Since the water saturation reduces the resistivity of a formation to a large extent, water filled voids and old coal workings are expected to have significant resistivity contrast with the surrounding host rock. Hence, ERI technique was applied in such an environment as this technique uses high-density data acquisition both laterally and vertically by using multiple number of electrodes. Along with ERI, mise-à-la-masse (also called charged body) technique was also employed at one of the promising sites to find out the connectivity of water logged areas and also detection of these old workings from the surface measurements was analyzed. The interpreted 2D resistivity sections have clearly indicated the water bearing zone(s) along the profile which was well confirmed with the existing water level in the nearby borewells. On the other hand, this technique did not identify the size of the coal pillar and gallery (air filled voids), which might be due to the small size of the voids (i.e. about 2 m × 2 m) below a depth of 15m and more but have indicated altogether as a high resistive zone ranging from 600–1000 Ohm-m.  相似文献   
386.
A study was carried out to test the usefulness of surface geochemical methods as regional evaluation tools in petroliferous region of the Mehsana block, North Cambay Basin. A suite of 135 soil samples collected from the depth of 2.5 m, were analyzed for adsorbed light gaseous hydrocarbons and carbon isotopes (δ13Cmethane and δ13Cethane). The light gaseous hydrocarbon analysis show that the concentration ranges 402 ppb, 135 ppb, 70 ppb, 9 ppb and 18 ppb of C1, C2, C3, iC4 and nC4, respectively. The value of carbon isotopic ranges of methane −29.5 to −43.0‰ (PDB) and ethane −19.1 to −20.9‰ (PDB). This data, when mapped, indicates patterns coinciding with major known oil and/or gas field of Sobhasan/Linch in this study area. The existence of un-altered petroliferous microseeps of catagenetic origin is observed in the study area. A regional study, such as the one described here, can provide important exploration facts concerning the regional hydrocarbon potential in a block. This method has been confirmed and can be applied successfully in frontier basins.  相似文献   
387.
Elemental mobility based on major element geochemistry from 58 horizons related to six paleosols profiles in a typical Miocene — Pliocene Siwalik fluvial sequence in the NW Himalaya has been reported here. The paleosols developed over felsic parent material of fine to medium grained sandstone indicate notable enrichment of sesquioxides (Al2O3 = 29 % and Fe2O3 = 54 %) depicting significant leaching and dissolution. The depletion of base cations (mean wt% of Na2O = 0.24; CaO = 0.51) and SiO2 (mean wt% = 63.6) in the pedogenic layers and its enrichment in the parental material (mean wt% of Na2O = 0.44; CaO = 1.3; SiO2 = 70.1) shows a good gradient of elemental mobility due to pedogenesis. Bivariate plots of the base ratios (Na2O/K2O, CaO/K2O, and MgO/K2O) vs. Al2O3 reveal independent distribution for parent material, pedogenic horizons and the incipient zone indicating the gradual addition/removal of immobile/mobile elements with varying pedogenesis. Discontinuous and segmented pattern of the geochemical parameters enables discrimination of multiple pedogenic episodes and recognition of soil welding processes in the multistorey composite paleosols. We also test the applicability of the geochemical climofunctions: the Mean Annual Precipitation (MAP) and Mean Annual Temperature (MAT); that demands more data for calibration in the Siwalik paleosols.  相似文献   
388.
Texture in high-resolution satellite images requires substantial amendment in the conventional segmentation algorithms. A measure is proposed to compute the Hölder exponent (HE) to assess the roughness or smoothness around each pixel of the image. The localized singularity information is incorporated in computing the HE. An optimum window size is evaluated so that HE reacts to localized singularity. A two-step iterative procedure for clustering the transformed HE image is adapted to identify the range of HE, densely occupied in the kernel and to partition Hölder exponents into a cluster that matches with the range. Hölder exponent values (noise or not associated with the other cluster) are clubbed to a nearest possible cluster using the local maximum likelihood analysis.  相似文献   
389.
Noether gauge symmetry for F(R) theory of gravity has been explored recently. The fallacy is that, even after setting gauge to vanish, the form of F(R)∝R n (where n≠1 is arbitrary) obtained in the process, has been claimed to be an outcome of gauge Noether symmetry. On the contrary, earlier works proved that any nonlinear form other than $F(R) \propto R^{\frac{3}{2}}$ is obscure. Here, we show that, setting gauge term zero, Noether equations are satisfied only for n=2, which again does not satisfy the field equations. Thus, as noticed earlier, the only form that Noether symmetry admits is $F(R) \propto R^{\frac{3}{2}}$ . Noether symmetry with non-zero gauge has also been studied explicitly here, to show that it does not produce anything new.  相似文献   
390.
Some recent experimental observations have been shown that inclusion of electron collisions damping in inertial Alfvén wave (IAW) dynamics may be important for laboratory as well as space plasmas. This paper presents the numerical simulation of model equation governing the nonlinear dynamics of IAW in low-beta plasmas. When the nonlinearity arises due to the ponderomotive force and Joule heating driven density perturbations, the model equation turns out to be a modified nonlinear Schr?dinger equation (MNLS). The electron collisions are introduced only in the electron momentum equation. The damped localized structures of IAW with sidebands are obtained. Also, the effect of collisional damping on power spectra of magnetic fluctuations with different scaling laws has been studied. These turbulent structures may be responsible for particle acceleration in laboratory and space plasmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号