首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49360篇
  免费   792篇
  国内免费   321篇
测绘学   1335篇
大气科学   3834篇
地球物理   9315篇
地质学   16283篇
海洋学   4188篇
天文学   12193篇
综合类   108篇
自然地理   3217篇
  2020年   338篇
  2019年   341篇
  2018年   831篇
  2017年   816篇
  2016年   1052篇
  2015年   700篇
  2014年   1178篇
  2013年   2449篇
  2012年   1118篇
  2011年   1553篇
  2010年   1440篇
  2009年   1939篇
  2008年   1782篇
  2007年   1779篇
  2006年   1687篇
  2005年   1550篇
  2004年   1511篇
  2003年   1412篇
  2002年   1361篇
  2001年   1233篇
  2000年   1157篇
  1999年   1126篇
  1998年   1059篇
  1997年   1062篇
  1996年   845篇
  1995年   836篇
  1994年   795篇
  1993年   738篇
  1992年   708篇
  1991年   678篇
  1990年   781篇
  1989年   674篇
  1988年   648篇
  1987年   740篇
  1986年   621篇
  1985年   825篇
  1984年   948篇
  1983年   912篇
  1982年   861篇
  1981年   819篇
  1980年   722篇
  1979年   699篇
  1978年   692篇
  1977年   627篇
  1976年   597篇
  1975年   520篇
  1974年   597篇
  1973年   587篇
  1972年   362篇
  1971年   335篇
排序方式: 共有10000条查询结果,搜索用时 500 毫秒
401.
Recent Soviet research on commuting in the USSR is reviewed in the light of the General Strategy for a System of Settlement in the USSR, adopted in 1976. It is noted that rural-urban commuting to work has grown rapidly since 1975, particularly in the European parts of the USSR, and that most commuters prefer to live in rural or suburban areas within easy access of an urban center rather than in the central city itself.  相似文献   
402.
We examine the possibility that the observed cosmic-ray protons are of primary extragalactic origin. The present \(\bar p\) data are consistent with a primary extragalactic component having \(\bar p\) /p?3.2±0.7 x 10-4 independent of energy. Following the suggestion that most extragalactic cosmic rays are from active galaxies, we propose that most of the observed \(\bar p\) 's are alos from the same sites. This would imply the possibility of destroying the corresponding \(\bar \alpha \) 'sat the source, thus leading to a flux ratio \(\bar \alpha \) /α< \(\bar p\) /p. We further predict an estimate for \(\bar \alpha \) α~10-5, within the range of future cosmic-ray detectors. the cosmological implications of this proposal are discussed.  相似文献   
403.
In January of 1982 we measured a microwave spectrum of CO in the Martian atmosphere utilizing the rotational J = 1 → 2 transition of CO. We have analyzed data and reanalyzed the microwave spectra of R. K. Kakar, J. W. Waters, and W. J. Wilson, (Science196, 1090–1091, 1977, measured in 1975) and J. C. Good and F. P. Schloerb, (Icarus47, 166–172, 1981 measured in 1980) in order to constrain estimates of the temporal variability of CO abundance in the Martian atmosphere. Our values of CO column density from the data of Karar et al., Good and Schloerb, and our own are 1.7 ± 0.9 × 1020, 3.0 ± 1.0 × 1020, and 4.6 ± 2.0 × 1020cm?2, respectively. The most recent estimate of CO column density from the 1967 infrared spectra of J. Connes, P. Connes, and J.P. Maillard, (Atlas de Spectres Infarouges de Venus, Mars, Jupiter, et Saturne, Editions due Centre National de la Recherche Scientifique, Paris, 1969), is 2.0 ± 0.8 × 1020 cm?2 (L.D.G. Young and A.T. Young, Icarus30, 75–79, 1977). The large uncertainties given for the microwave measurements are due primarily to uncertainty in the difference between the continuum brightness temperature and atmospheric temperatures of Mars. We have accurately calculated the variation among the observations of the continuum (surface) brightness temperature of Mars, which is primaroly a function of the observed aspect of Mars. A more difficult problem to consider is variability of global atmospheric temperatures among the observations, particularly the effects of global dust storms and the ellipticity of the orbit of Mars. The large bars accompanying our estimates of CO column density from the three sets of microwave measurements are primarily caused by an assumed uncertainty of ±10°K in our atmospheric temperature model due to possible dust in the atmosphere. A qualitative consideration of seasonal variability of global atmospheric temperatures among the measurements suggests that there is not strong evidence for variability of the column abundance of CO on Mars, although variability of 0–100% over a time scale of several years is allowed by the data set. The implication for the variability of Mars O2 is, crudely, a factor of two less. We found that the altitude distribution of CO in the atmosphere of Mars was not well constrained by any of the spectra, although our spectrum was marginally better fitted by an altitude increasing profile of CO mixing ratios.  相似文献   
404.
We establish limits on the total radiant energy of solar flares during the period 1980 February – November, using the solar-constant monitor (ACRIM) on board the Solar Maximum Mission. Typical limits amount to 6 × 1029 erg/s for a 32-second integration time, with 5σ statistical significance, for an impulsive emission; for a gradual component, about 4 × 1032 ergs total radiant energy. The limits lie about an order of magnitude higher than the total radiant energy estimated from the various known emission components, suggesting that no heretofore unknown dominant component of flare radiation exists.  相似文献   
405.
A sample of flares detected in 1980 with the Bent Crystal Spectrometer and the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission satellite has been analysed to study the upward motions of part of the soft X-ray emitting plasma. These motions are inferred from the presence of secondary blue-shifted lines in the Ca XIX and Fe XXV spectral regions during the impulsive phase of disk flares. Limb flares do not show such blue-shifted lines indicating that the direction of the plasma motion is mainly radial and outward. The temporal association of these upward motions with the rise of the thermal phase and with the impulsive hard X-ray burst, as well as considerations of the plasma energetics, favour the interpretation of this phenomenon in terms of chromospheric evaporation. The two measureable parameters of the evaporating plasma, emission measure and velocity, depend on parameters related to the energy deposition and to the thermal phase. The evaporation velocity is found to be correlated with the spectral index of the hard X-ray flux and with the rise time of the thermal emission measure of the coronal plasma. The emission measure of the rising plasma is found to be correlated with the total energy deposited by the fast electrons in the chromosphere by collisions during the impulsive phase and with the maximum emission measure of the coronal plasma.  相似文献   
406.
Radio and X-ray observations are presented for three flares which show significant activity for several minutes prior to the main impulsive increase in the hard X-ray flux. The activity in this ‘pre-flash’ phase is investigated using 3.5 to 461 keV X-ray data from the Solar Maximum Mission, 100 to 1000 MHz radio data from Zürich, and 169 MHz radio-heliograph data from Nançay. The major results of this study are as follows:
  1. Decimetric pulsations, interpreted as plasma emission at densities of 109–1010 cm?3, and soft X-rays are observed before any Hα or hard X-ray increase.
  2. Some of the metric type III radio bursts appear close in time to hard X-ray peaks but delayed between 0.5 and 1.5 s, with the shorter delays for the bursts with the higher starting frequencies.
  3. The starting frequencies of these type III bursts appear to correlate with the electron temperatures derived from isothermal fits to the hard X-ray spectra. Such a correlation is expected if the particles are released at a constant altitude with an evolving electron distribution. In addition to this effect we find evidence for a downward motion of the acceleration site at the onset of the flash phase.
  4. In some cases the earlier type III bursts occurred at a different location, far from the main position during the flash phase.
  5. The flash phase is characterized by higher hard X-ray temperatures, more rapid increase in X-ray flux, and higher starting frequency of the coincident type III bursts.
  相似文献   
407.
It is proposed that the solar flare phenomenon can be understood as a manifestation of the electrodynamic coupling process of the photosphere-chromosphere-corona system as a whole. The system is coupled by electric currents, flowing along (both upward and downward) and across the magnetic field lines, powered by the dynamo process driven by the neutral wind in the photosphere and the lower chromosphere. A self-consistent formulation of the proposed coupling system is given. It is shown in particular that the coupling system can generate and dissipate the power of 1029 erg s#X2212;1 and the total energy of 1032 erg during a typical life time (103 s) of solar flares. The energy consumptions include Joule heat production, acceleration of current-carrying particles along field lines, magnetic energy storage and kinetic energy of plasma convection. The particle acceleration arises from the development of field-aligned potential drops of 10–150 kV due to the loss-cone constriction effect along the upward field-aligned currents, causing optical, X-ray and radio emissions. The total number of precipitating electrons during a flare is shown to be of order 1037–1038.  相似文献   
408.
G. R. Isaak 《Solar physics》1983,82(1-2):235-235
The size of the rotational splitting recently observed (Claverie et al., 1981) is correlated with the 12.2d variation in the measurements of solar oblateness observed by Dicke (1976) and implies a convection zone of depth of 0.1 R . The near equality of amplitudes of global velocity oscillations (Claverie et al., 1981) of the various m components of the l = 1 and l = 2 modes as seen from the Earth viewing the Sun nearly along the equator is unexpected for pure rotational splitting. It is suggested that a magnetic perturbation is present and an oblique asymmetric magnetic rotator with magnetic fields of a few million gauss is responsible. A more detailed account was submitted to Nature.Proceedings of the 66th IAU Colloquium: Problems in Solar and Stellar Oscillations, held at the Crimean Astrophysical Observatory, U.S.S.R., 1–5 September, 1981.  相似文献   
409.
The Culgoora radioheliograph has been modified for observing at 327.4 MHz, which is in addition to the three frequencies (43.25, 80, and 160 MHz) previously available. At the new frequency the array beamwidth is 56, which represents the highest resolution yet available for metre-wavelength solar mapping.At 327.4 MHz the sources of radio emission are mainly in the lowest layers of the corona. Some preliminary four-frequency observations have been made of type I storms. It is found that the source size generally decreases with increasing observing frequency. This result confirms earlier suggestions that the sources of both type I and type III emission are contained in structures whose boundaries diverge outwards in the corona.  相似文献   
410.
Simultaneous microwave and X-ray observations are presented for a solar flare detected on May 8, 1980 starting at 19:37 UT. The X-ray observations were made with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28–490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Observatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms, respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive peaks in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240 ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5 s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号