首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   9篇
  国内免费   8篇
测绘学   16篇
大气科学   6篇
地球物理   64篇
地质学   91篇
海洋学   13篇
天文学   6篇
综合类   6篇
自然地理   7篇
  2023年   1篇
  2022年   7篇
  2021年   9篇
  2020年   22篇
  2019年   14篇
  2018年   16篇
  2017年   28篇
  2016年   18篇
  2015年   14篇
  2014年   19篇
  2013年   19篇
  2012年   10篇
  2011年   9篇
  2010年   8篇
  2009年   5篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1996年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
131.
Kerman province, located in the south eastern Iran, is dominated with clays which can be used in different projects. The liner system within a landfill is constructed to control leachate migration and can be constructed by low permeable natural soils or plastic lining materials, environmentally however, natural materials is preferred that usually need to be amended in order to meet requirements recommended by environmental agencies. This research examines the possibility of using the Kerman collapsible clay as a liner layer material. A set of laboratory test was conducted on pure soil samples and additive treated samples. The moderate collapse potential of the used soil is decreased with wet compaction and under the effect of additive-soil reactions. Laboratory investigations showed that lime and bentonite treatment improved the hydraulic conductivity. The results revealed hydraulic conductivities on the order of 10?8 m/s. The obtained values met the 1.0E?07 m/s criterion required by Iranian standards. Unconfined compression tests were also performed on pure soil and additive amended samples. The unconfined compression strength values demonstrated gradual decreases with the addition of bentonite and considerable increases with adding lime such that with adding 1% lime the unconfined compression strength increased by 75%. This study verified that the Kerman collapsing clay can be used as a liner material using lime and bentonite as additives.  相似文献   
132.
Empirical geothermometer dealing with Ti solubility in the Fe‐Mg biotites was originally proposed for biotites in graphitic, peraluminous metapelites containing ilmenite or rutile that equilibrated roughly at 4–6 kbar. Given that biotites are abundant in the porphyry copper systems, this geothermometer has frequently been used for the determination of magmatic–hydrothermal temperatures in the porphyry copper systems. Common associations of porphyry copper deposits (PCDs), that is, low Al content of biotite, biotite chloritization (causes the biotite to become more magnesian and to lose Ti), and biotite formation by amphibole replacement, as well as disequilibrium, local equilibrium, or re‐equilibration of biotites, especially through potassic alteration, may provide significant uncertainty in the temperatures estimated a by Ti‐in‐biotite geothermometer. In addition, besides the calibration range of thermometer for pressure (400–600 MPa), the temperatures of major sulfide precipitation in PCDs (>~400°C) does not fit with the temperature range of thermometer calibration (480–800°C). Worth noting, as confirmed by fluid inclusion data in the Sarkuh PCD, regardless of presence of mineralogical requirements, obtained temperatures of sulfide mineralization using Ti in biotite thermometer could be overestimated. This may be due to the difference between general conditions of sulfide mineralization and calibration range of Ti in the biotite thermometer for pressure and temperature, as well as the metaluminous nature of biotites in PCDs.  相似文献   
133.
The Mazraeh Cu–Fe skarn deposit, NW Iran is the result of the intrusion of an Oligocene–Miocene granitic pluton into Cretaceous calcareous rocks. The pluton ranges in composition from monzonite to quartz monzonite, monzogranite, tonalite and granodiorite with I-type, calc-alkaline, and weakly peraluminous characteristics. The Mazraeh pluton was emplaced in a volcanic arc setting in an active continental margin at a depth of ~8 km. Pyroxene skarn, garnet skarn, and epidote skarn zones were formed during the intrusive phase. The garnet skarn developed as exoskarn and endoskarn from the calcareous wall rocks and the pluton, respectively, prior to mineralization. Garnet skarn from the exoskarn zone is identified by relict layering inherited from the precursor calcareous lithologies. Mass balance calculation of garnet skarn in the endoskarn zone indicates that hydrothermal fluids originating from the cooling magma introduced Si, Fe, Mn, Ca, Mg, P, Ag, Cu, Zn, La, Pb, Cd, Mo, and Y. The main mass loss in the garnet skarn was due to destruction of feldspars in the Mazraeh plutonic rocks and leaching of K2O and Na2O. Released Ca has been fixed in the andraditic garnet. Garnetization of the Mazraeh pluton was accompanied by mass and volume increase. The magnitude of these changes depends mainly on the degree of alteration and composition of the precursor. The brittle behavior of the endoskarn zone was increased due to formation of massive garnet which subsequently fractured. These fractures not only facilitated movement of hydrothermal fluids but also provided new locations for Cu mineralization. Therefore locating strongly garnetized zones may be a vector to ore in skarn deposits.  相似文献   
134.
135.
This paper presents a numerical scheme for fluid‐particle coupling that uses the discrete element method by taking into consideration solid deformation and pore pressure generation. A new water particle element is introduced to calculate pore water pressure due to porosity changes. The water particle element has the same size and shape as the solid element and experiences the same amount of deformation. On the basis of the effective stress principle at the element contact, the total force is equal to the sum of the force transmitted through the solid element contact and the water particle force due to pore water pressure. Analytical solutions of traditional soil mechanics problems, such as isotropic compression and consolidated triaxial undrained test, are used to quantitatively validate the proposed model. The numerical results show good agreement between the model and the analytical solutions. The model therefore provides an effective method to calculate pore pressure in a porous medium in discrete modeling.  相似文献   
136.
In this paper we are proposing an alternative method for determination of density variations of the crust from constrained inversion of the terrestrial gravity data. The main features of the method can be summarized as follows: (i) Constructing a band-pass filter to remove the long and short wavelength signals from the terrestrial gravity data. (ii) Using an iterative method for stabilization and solution of the inverse problem. The mentioned regularization method is first validated by simulated gravity data and next the methodology is used for development of a new regional density variation model of the crust in three layers based on real gravity data in geographical area of Iran. Application of the band-pass filter to the latter data resulted the residual gravitation variations in the range of − 300 to 50 (mGal) which next based on the iterative method resulted following ranges for residual densities: −120 to 40 (kg/m3) in first layer, −40 to 40 (kg/m3) in second layer, and − 40 to 40 (kg/m3) in third layer.  相似文献   
137.
This study evaluates the effect of nanoclay on permeability, swelling, compressive strength, and cation exchange capacity of a compacted Kahrizak landfill clay liner. The results show that 4% nanoclay significantly reduces permeability (3 × 10?9 to 7.74 × 10?11 cm/s in neutral, 3.66 × 10?9 to 7.9 × 10?10 cm/s in acidic, and 3.25 × 10?9 to 5.24 × 10?10 cm/s in alkaline condition), and increases compressive strength (by 36.28%) and the percentage of swelling (from 16.67 to 41.82, 23.33 to 45.45, and 15 to 38.18 at pH 7, 4.8, and 9, respectively) compare to raw clay samples. Moreover, the results of cation exchange capacity tests show that adding 4% nanoclay to the Kahrizak clay, permeated with landfill leachate, helps the sample maintain its mono‐valent ions between layers and remains dispersed. The results of SEM and XRD analyses show that by adding nanoclay, nanoclay clusters are formed in the sample; as a result, the interlayer spacing decreases which makes it remain dispersed. XRF analyses also demonstrate that by adding nanoclay to the mixture, the permeability and therefore, the amount of heavy metals which can penetrate into it decreases. The results justify the construction of clay barriers with nanoclay in order to prevent leachate penetration, and consequently reduce the operation costs.  相似文献   
138.
This study aims to understand the mechanisms of emergency response network evolution by quantitatively examining the link formation pattern among participants involved in a real emergency collaboration network. This is achieved by identifying the participants’ characteristics which can affect forming new links over time. The result indicates the existence of cumulative advantage process, where highly connected participants gain more new links over time. It also reveals the structural position of participants involved in a response network, i.e. brokering position, affects their number of future links. Understanding the link formation pattern is important for understanding the mechanisms of network evolution which help predict more precisely the behavior of actors and dynamics of network structure over time. This can assist researchers, decision makers and practitioners to manage and support the collaboration of actors in their systems in order to reach their organizational goals. The overall findings can contribute further to the development of network organizational theory in different contexts especially disaster and emergency response management.  相似文献   
139.
The Sonajeel prospect is located in the Arasbaran belt which is one of the significant copper mineralization belts in NW Iran. There are mostly Eocene volcano-sedimentary rocks and Post Eocene intrusive units which are the source for mineralization in the area. ASTER multispectral images were used for delineation of alteration zones as a key feature of porphyry copper mineralization. Due to the need for geometric correction and ortho-rectification of the ASTER images, a high resolution QuickBird image with pixel width of about 60 cm (in PAN) was employed as a reference image in order to boost the rectification process. Ortho-rectification has been done by using digital elevation model which is created by topographic map in scale 1:1000. Potassic alteration as one of the essential alteration types in porphyry copper deposits, distributed mostly in the north of the Sonajeel prospect that determined by Thermal infrared bands processing. Phyllic and argillic alteration zones detected by creating relative absorption band-depth grids which are comparable to field observations. Moreover, silica rich areas which are remnants of hydrothermal circulation and form at the top of porphyry copper systems were detected for recognition of epithermal deposits (with 1 km distance from Sonajeel porphyry system). Finally, Remote Sensing results were compared by field evidences especially for determination of an epithermal system. Most parts of the alteration zones were observed of the surface confirmed with the remote sensing alteration (in average about 75% matched fittingly), displayed concentrations anomalous in the NE and NW parts of the studied area.  相似文献   
140.
This article presents a sensitivity analysis investigating the impact of using high-resolution site conditions databases in portfolio earthquake loss estimation. This article also estimates the effects of variability in the site condition databases on probabilistic earthquake loss ratios and their geographical pattern with respect to structural characteristics of different building types. To perform the earthquake loss estimation here, the OpenQuake software developed by Global Earthquake Model is implemented in Clemson University’s supercomputer. The probabilistic event-based risk analysis is employed considering several notional portfolios of different building types in the San Francisco area as the inventory exposure. This analysis produces the stochastic event sets worth for 10,000 years including almost 8000 synthetically simulated earthquakes. Then, the ground motion prediction equations are used to calculate the ground motion per event and incorporate the effect of five site conditions, on amplifying or de-amplifying the ground motions on notional building exposure locations. Notional buildings are used to account for various building characteristics in conformance with the building taxonomy represented in HAZUS software. The HAZUS damage functions are applied to model the vulnerability of various structural types of buildings. Finally, the 50-year average mean loss and probabilistic loss for multiple values for probability of exceedance (2, 10, 20, and 40%) in 50 years are calculated, and the impact of different site condition databases on portfolio loss ratios is investigated for different structural types and heights of buildings. The results show the aggregated and geographical variation of loss and loss ratio throughout the region for various site conditions. Comparing the aggregated loss and loss ratio, while considering different databases, represents normalized differences that are limited to 6% for all building taxonomy with various heights and for all PoEs. However, site-specific loss ratio errors are significantly greater and in some cases are more than 20%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号