全文获取类型
收费全文 | 1714篇 |
免费 | 73篇 |
国内免费 | 50篇 |
专业分类
测绘学 | 59篇 |
大气科学 | 131篇 |
地球物理 | 363篇 |
地质学 | 603篇 |
海洋学 | 118篇 |
天文学 | 412篇 |
综合类 | 11篇 |
自然地理 | 140篇 |
出版年
2024年 | 10篇 |
2023年 | 14篇 |
2022年 | 10篇 |
2021年 | 38篇 |
2020年 | 42篇 |
2019年 | 39篇 |
2018年 | 81篇 |
2017年 | 68篇 |
2016年 | 78篇 |
2015年 | 74篇 |
2014年 | 79篇 |
2013年 | 113篇 |
2012年 | 67篇 |
2011年 | 98篇 |
2010年 | 81篇 |
2009年 | 90篇 |
2008年 | 88篇 |
2007年 | 91篇 |
2006年 | 76篇 |
2005年 | 59篇 |
2004年 | 64篇 |
2003年 | 49篇 |
2002年 | 48篇 |
2001年 | 36篇 |
2000年 | 44篇 |
1999年 | 34篇 |
1998年 | 21篇 |
1997年 | 23篇 |
1996年 | 19篇 |
1995年 | 11篇 |
1994年 | 13篇 |
1993年 | 11篇 |
1992年 | 15篇 |
1991年 | 8篇 |
1990年 | 9篇 |
1989年 | 6篇 |
1988年 | 6篇 |
1987年 | 7篇 |
1986年 | 10篇 |
1985年 | 12篇 |
1984年 | 7篇 |
1983年 | 9篇 |
1982年 | 5篇 |
1981年 | 7篇 |
1980年 | 7篇 |
1979年 | 8篇 |
1978年 | 7篇 |
1977年 | 5篇 |
1976年 | 5篇 |
1973年 | 4篇 |
排序方式: 共有1837条查询结果,搜索用时 15 毫秒
71.
M. S. Clemens P. Alexander & D. A. Green 《Monthly notices of the Royal Astronomical Society》1998,297(4):1015-1020
We present observations of H i in the nearby interacting galaxies NGC 4490 and 4485 made with the VLA in both C and D arrays. The galaxies are embedded in an extensive envelope of neutral hydrogen which is elongated in a direction approximately perpendicular to the plane of NGC 4490, with an extent of about 56 kpc. We argue that this distribution of neutral hydrogen can best be explained by a galactic-scale bipolar outflow of H i driven by supernovae in NGC 4490. The flow from the disc appears to be reasonably well collimated and has probably persisted for approximately 6 × 108 yr. The implications for galaxy evolution when such mass loss occurs are briefly discussed. 相似文献
72.
LI Yong SU De-chen ZHOU Rong-jun LI Hai-bing Alexander L.DENSMORE YAN Liang YAN Zhao-kun 《山地科学学报》2013,10(1):29-42
Longmen Mountain located at the boundary between the Sichuan Basin and Tibetan Plateau,representing the steepest gradient of any edges of the plateau.Three endmember models of uplift process and mechanism have been proposed,including crustal thickening,crustal flow,and crustal isostatic rebound.Here we use coeval sedimentary sequences in the foreland basin to restraint uplift process and mechanism in the Longmen Mountain.The more than 10,000 m thick Late TriassicQuaternary strata filled in this foreland basin and can be divided into six megasequences that are distinguished as two distinct types.The first type is the wedge-shaped megasequences which are sedimentary response of strong active thrust loading events,characterized by a high rate of subsidence and sediment accumulation,coarsening-upward succession and a dual-sourced sediment supply.This type includes Late Triassic,Late Jurassic to Early Cretaceous and Late Cretaceous to Paleogene megasequences.The second type is the tabular megasequences,characterized by the low rate of subsidence and sediment accumulation,finingupward succession,and a single-sourced sediment supply,which is sedimentary response of isostatic rebound and erosion unloading.This type includes the Early to Middle Jurassic,Middle Cretaceous and Neogene to Quaternary megasequences.Basing on sedimentary,active tectonic,geomorphic evidence,we infer that the direction has been reversed from SSWdirected sinistral strike-slip to NNE-directed dextral strike-slip during 40-3.6 Ma,and since 3.6 Ma,the Longmen Mountain thrust belt belong to times of isostatic rebound and erosional unloading with NNEdirected dextral strike-slip.This suggests that crustal isostatic rebound is a primary driver for uplift and topography of the present Longmen Mountain.The Wenchuan(Ms8.0) earthquake,which ruptured a large thrust fault with NNE-directed dextral strikeslip along the range front,is an active manifestation of this crustal isostatic rebound process with dextral strike-slipping and shortening.This process may be the cause for the Wenchuan Earthquake and the apparent paradox of high relief,little shortening,the relative dearth of historical seismicity in the region. 相似文献
73.
Abstract— The Chesapeake Bay impact structure, which is about 35 Ma old, has previously been proposed as the possible source crater of the North American tektites (NAT). Here we report major and trace element data as well as the first Sr‐Nd isotope data for drill core and outcrop samples of target lithologies, crater fill breccias, and post‐impact sediments of the Chesapeake Bay impact structure. The unconsolidated sediments, Cretaceous to middle Eocene in age, have ?Srt = 35.7 Ma of +54 to +272, and ?Ndt = 35.7 Ma ranging from ?6.5 to ?10.8; one sample from the granitic basement with a TNdCHUR model age of 1.36 Ga yielded an ?Srt = 35.7 Ma of +188 and an ?Ndt = 35.7 Ma of ?5.7. The Exmore breccia (crater fill) can be explained as a mix of the measured target sediments and the granite, plus an as‐yet undetermined component. The post‐impact sediments of the Chickahominy formation have slightly higher TNdCHUR model ages of about 1.55 Ga, indicating a contribution of some older materials. Newly analyzed bediasites have the following isotope parameters: +104 to +119 (?Srt = 35.7 Ma), ?5.7 (?Ndt = 35.7 Ma), 0.47 Ga (TSrUR), and 1.15 Ga (TNdCHUR), which is in excellent agreement with previously published data for samples of the NAT strewn field. Target rocks with highly radiogenic Sr isotopic composition, as required for explaining the isotopic characteristics of Deep Sea Drilling Project (DSDP) site 612 tektites, were not among the analyzed sample suite. Based on the new isotope data, we exclude any relation between the NA tektites and the Popigai impact crater, although they have identical ages within 2s? errors. The Chesapeake Bay structure, however, is now clearly constrained as the source crater for the North American tektites, although the present data set obviously does not include all target lithologies that have contributed to the composition of the tektites. 相似文献
74.
75.
Pierre Kaufmann Rogério Marcon André Abrantes Emilio C. Bortolucci Luis Olavo T. Fernandes Grigory I. Kropotov Amauri S. Kudaka Nelson Machado Adolfo Marun Valery Nikolaev Alexandre Silva Claudemir S. da Silva Alexander Timofeevsky 《Experimental Astronomy》2014,37(3):579-598
The search for the still unrevealed spectral shape of the mysterious THz solar flare emissions is one of the current most challenging research issues. The concept, fabrication and performance of a double THz photometer system, named SOLAR-T, is presented. Its innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. The detecting system was constructed to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. Tests have been conducted to confirm the entire system performance, on ambient and low pressure and temperature conditions. An artificial Sun setup was developed to simulate performance on actual observations. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014–2016. 相似文献
76.
M. A. Worsley A. C. Fabian F. E. Bauer D. M. Alexander W. N. Brandt B. D. Lehmer 《Monthly notices of the Royal Astronomical Society》2006,368(4):1735-1741
The emission from individual X-ray sources in the Chandra Deep Fields and XMM – Newton Lockman Hole shows that almost half of the hard X-ray background above 6 keV is unresolved and implies the existence of a missing population of heavily obscured active galactic nuclei (AGN). We have stacked the 0.5–8 keV X-ray emission from optical sources in the Great Observatories Origins Deep Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these galaxies, which are individually undetected in X-rays, are hosting the hypothesized missing AGN. In the 0.5–6 keV energy range, the stacked-source emission corresponds to the remaining 10–20 per cent of the total background – the fraction that has not been resolved by Chandra . The spectrum of the stacked emission is consistent with starburst activity or weak AGN emission. In the 6–8 keV band, we find that upper limits to the stacked X-ray intensity from the GOODS galaxies are consistent with the ∼40 per cent of the total background that remains unresolved, but further selection refinement is required to identify the X-ray sources and confirm their contribution. 相似文献
77.
78.
Bianca KETTRUP Alexander DEUTSCH Markus OSTERMANN Pierre AGRINIER 《Meteoritics & planetary science》2000,35(6):1229-1238
Abstract— The 65 Ma Chicxulub impact structure, Mexico, with a diameter of ~180 km is the focus of geoscientific research because of its link to the mass extinction event at the Cretaceous‐Tertiary (K/T) boundary. Chicxulub, now buried beneath thick post‐impact sediments, is probably one of the best‐preserved terrestrial impact structures known. Because of its inaccessibility, only limited samples on the impact lithologies from a few drill cores are available. We report major element and Sr‐, Nd‐, O‐, and C‐isotopic data for Chicxulub impact‐melt lithologies and basement clasts in impact breccias of drill cores C‐1 and Y‐6, and for melt particles in the Chicxulub ejecta horizon at the K/T boundary in Beloc, Haiti. The melt lithologies with SiO2 ranging from 58 to ~63 wt% show significant variations in the content of Al, Ca, and the alkalies. In the melt matrix samples, δ13C of the calcite is about ?3%o. The δ18O values for the siliceous melt matrices of Y‐6 samples range from 9.9 to 12.4%o. Melt lithologies and the black Haitian glass have rather uniform 87Sr/86Sr ratios (0.7079 to 0.7094); only one lithic fragment displays 87Sr/86Sr of 0.7141. The Sr model ages TSrUR for most lithologies range from 830 to 1833 Ma; unrealistic negative model ages point to an open Rb‐Sr system with loss of Rb in a hydrothermal process. The 143Nd/144Nd ratios for all samples, except one basement clast with 143Nd/144Nd of 0.5121, cluster at 0.5123 to 0.5124. In an ?Nd‐?Sr diagram, impactites plot in a field delimited by ?Nd of ?2 to ?6, and ?Sr of 55 to 69. This field is not defined by the basement lithologies described to occur as lithic clasts in impact breccias and Cretaceous sediments. At least one additional intermediate to mafic precursor component is required to explain the data. 相似文献
79.
The origin of Mercury's anomalous core and low FeO surface mineralogy are outstanding questions in planetary science. Mercury's composition may result from cosmochemical controls on the precursor solids that accreted to form Mercury. High temperatures and enrichment in solid condensates are likely conditions near the midplane of the inner solar protoplanetary disk. Silicate liquids similar to the liquids quenched in ferromagnesian chondrules are thermodynamically stable in oxygen-rich systems that are highly enriched in dust of CI-chondrite composition. In contrast, the solids surviving into the orbit of Mercury's accretion zone were probably similar to highly unequilibrated, anhydrous, interstellar organic- and presolar grain-bearing chondritic, porous interplanetary dust particles (C-IDPs). Chemical systems enriched in an assumed C-IDP composition dust produce condensates (solid+liquid assemblages in equilibrium with vapor) with super-chondritic atomic Fe/Si ratios at high temperatures, approaching 50% of that estimated for bulk Mercury. Sulfur behaves as a refractory element, but at lower temperatures, in these chemical systems. Stable minerals are FeO-poor, and include CaS and MgS, species found in enstatite chondrites. Disk gradients in volatile compositions of planetary and asteroidal precursors can explain Mercury's anomalous composition, as well as enstatite chondrite and aubrite parent body compositions. This model predicts high sulfur content, and very low FeO content of Mercury's surface rocks. 相似文献
80.
Bruno Bézard Anna Fedorova Jean-Loup Bertaux Alexander Rodin Oleg Korablev 《Icarus》2011,216(1):173-183
Observations of the 1.10- and 1.18-μm nightside windows by the SPICAV-IR instrument aboard Venus Express were analyzed to characterize the various sources of gaseous opacity and determine the H2O mole fraction in the lower atmosphere of Venus. We showed that the line profile model of Afanasenko and Rodin (Afanasenko, T.S., Rodin, A.V. [2007]. Astron. Lett. 33, 203–210) underestimates the CO2 absorption in the high-wavelength wing of the 1.18-μm window and we derived an empirical lineshape that matches this wing well. An additional continuum opacity is required to reproduce the variation of the 1.10- and 1.18-μm radiances with surface elevation as observed by the VIRTIS-M instrument aboard Venus Express. A constant absorption coefficient of 0.7 ± 0.2 × 10−9 cm−1 am−2 best reproduces the observed variation. We compared spectra calculated with different CO2 and H2O line lists. We found that the CDSD line list lacks the 5ν1 + ν3 series of CO2 bands, which provide significant opacity in Venus’ deep atmosphere, and we have constructed a composite line list that best reproduces the observations. We also showed for the first time that HDO brings significant absorption at 1140–1190 nm. Using the best representation of the atmospheric opacity we could reach, we retrieved a water vapor mole fraction of ppmv, pertaining to the altitude range 5–25 km. Combined with previous measurements in the 1.74- and 2.3-μm windows, this result provides strong evidence for a uniform H2O profile below 40 km, in agreement with chemical models. 相似文献