首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   5篇
  国内免费   4篇
测绘学   49篇
大气科学   33篇
地球物理   90篇
地质学   192篇
海洋学   11篇
天文学   65篇
综合类   7篇
自然地理   4篇
  2022年   11篇
  2021年   7篇
  2020年   6篇
  2019年   8篇
  2018年   38篇
  2017年   25篇
  2016年   18篇
  2015年   15篇
  2014年   28篇
  2013年   41篇
  2012年   20篇
  2011年   17篇
  2010年   16篇
  2009年   23篇
  2008年   19篇
  2007年   19篇
  2006年   14篇
  2005年   10篇
  2004年   8篇
  2003年   8篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1973年   1篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有451条查询结果,搜索用时 0 毫秒
21.
The stability of modulation of ion-acoustic waves in a collisionless electron–positron–ion plasma with warm adiabatic ions is studied. Using the Krylov–Bogoliubov–Mitropolosky (KBM) perturbation technique a nonlinear Schrödinger equation governing the slow modulation of the wave amplitude is derived for the system. It is found that for given set of parameters having finite ion temperature ratio (T i /T e ) the waves are unstable for the values of k lying in the range k min<k<k max. On increasing the ion temperature ratio (T i /T e ), it is found that k min and k max, both decreases and product PQ increases. The range of unstable region shifts towards the small wave number k, as temperature ratio (T i /T e ) increases. The positron concentration and temperature ratio of positron to electron, change the unstable region slightly. As positron concentration increases both k min and k max for modulational instability increases and maximum value of the product PQ shifts towards the larger value of k.  相似文献   
22.
A self-similar solution to the problem of the implosion of a cylindrical shock wave in the presence of a magnetic field has been investigated. A strong shock wave in a cylindrically-symmetric flow travels to the axis of symmetry through a gas of uniform initial density 0 and zero-pressure. A comparative study has been made between the results obtained in ordinary gasdynamics and magnetogasdynamics with transverse and axial components of the magnetic field. The value of similarity exponent has been assigned from that found in the paper of Whitham (1958).  相似文献   
23.
24.
Crack-initiation stress of a rock under compression is the stress level that marks the initiation of the rock microfracturing process or in other words, the onset of new damage to the rock. This paper proposed a simple methodology with justifications to explore the feasibility of using total and effective porosities as estimators of crack-initiation stress of brittle crystalline rock materials under uniaxial compression. The validity/applicability of the proposed method was examined by an experimental study of granitic materials from Malanjkhand, Madhya Pradesh. It was found that effective porosity depicts better correlation with crack-initiation stress than with uniaxial compressive strength of the granitic materials. On the other hand, total porosity does not show any perceptible correlation with uniaxial compressive strength and crack-initiation stress. Plausible reasons for the nature of the obtained results were also explained in view of rock failure process under compression. It is concluded that following the proposed method, effective porosity can be used as a physical index to obtain a quick estimate of crack-initiation stress of the investigated rocks empirically.  相似文献   
25.
Spectral analysis of digital data of the Bouguer anomaly map of NW India suggests maximum depth of causative sources as 134 km that represents the regional field and coincides with the upwarped lithosphere — asthenosphere boundary as inferred from seismic tomography. This upwarping of the Indian plate in this section is related to the lithospheric flexure due to its down thrusting along the Himalayan front. The other causative layers are located at depths of 33, 17, and 6 km indicating depth to the sources along the Moho, lower crust and the basement under Ganga foredeep, the former two also appear to be upwarped as crustal bulge with respect to their depths in adjoining sections. The gravity and the geoid anomaly maps of the NW India provide two specific trends, NW-SE and NE-SW oriented highs due to the lithospheric flexure along the NW Himalayan fold belt in the north and the Western fold belt (Kirthar -Sulaiman ranges, Pakistan) and the Aravalli Delhi Fold Belt (ADFB) in the west, respectively. The lithospheric flexures also manifest them self as crustal bulge and shallow basement ridges such as Delhi — Lahore — Sagodha ridge and Jaisalmer — Ganganagar ridge. There are other NE-SW oriented gravity and geoid highs that may be related to thermal events such as plumes that affected this region. The ADFB and its margin faults extend through Ganga basin and intersect the NW Himalayan front in the Nahan salient and the Dehradun reentrant that are more seismogenic. Similarly, the extension of NE-SW oriented gravity highs associated with Jaisalmer — Ganganagar flexure and ridge towards the Himalayan front meets the gravity highs of the Kangra reentrant that is also seismogenic and experienced a 7.8 magnitude earthquake in 1905. Even parts of the lithospheric flexure and related basement ridge of Delhi — Lahore — Sargodha show more seismic activity in its western part and around Delhi as compared to other parts. The geoid highs over the Jaisalmer — Ganganagar ridge passes through Kachchh rift and connects it to plate boundaries towards the SW (Murray ridge) and NW (Kirthar range) that makes the Kachchh as a part of a diffused plate boundary, which, is one of the most seismogenic regions with large scale mafic intrusive that is supported from 3-D seismic tomography. The modeling of regional gravity field along a profile, Ganganagar — Chandigarh extended beyond the Main Central Thrust (MCT) constrained from the various seismic studies across different parts of the Himalaya suggests crustal thickening from 35-36 km under plains up to ~56 km under the MCT for a density of 3.1 g/cm3 and 3.25 g/cm3 of the lower most crust and the upper mantle, respectively. An upwarping of ~3 km in the Moho, crust and basement south of the Himalayan frontal thrusts is noticed due to the lithospheric flexure. High density for the lower most crust indicates partial eclogitization that releases copious fluid that may cause reduction of density in the upper mantle due to sepentinization (3.25 g/cm3). It has also been reported from some other sections of Himalaya. Modeling of the residual gravity and magnetic fields along the same profile suggest gravity highs and lows of NW India to be caused by basement ridges and depressions, respectively. Basement also shows high susceptibility indicating their association with mafic rocks. High density and high magnetization rocks in the basement north of Chandigarh may represent part of the ADFB extending to the Himalayan front primarily in the Nahan salient. The Nahan salient shows a basement uplift of ~ 2 km that appears to have diverted courses of major rivers on either sides of it. The shallow crustal model has also delineated major Himalayan thrusts that merge subsurface into the Main Himalayan Thrust (MHT), which, is a decollment plane.  相似文献   
26.

Gas well drilled through longwall mining abutment pillar could potentially face instability issue due to the strata deformation following longwall panel extraction. Therefore, it is imperative to adequately design the pillar size of a longwall mining in order to ensure the stability of the gas well penetrated longwall mining abutment pillar. In this paper, the determination of suitable pillar size for protecting gas well subjected to longwall mining operation was investigated. Two scenarios of longwall gateroad system including the three and four entry system with varying pillar sizes were assessed using numerical modelling approach. The results of this study indicate that the pillar geometry plays an important role on the vertical gas well stability. In addressing the suitable pillar size for the given case study considering three entry system, the suitable chain pillar and abutment pillar size were found to be 80 ft (24.4 m) wide by 120 ft (36.6 m) length and 104 ft (31.7 m) wide by 120 ft (36.6 m) length rib to rib, respectively. Whereas, if four entry system is used, the suitable chain pillar size is 48 ft (14.6) wide by 120 ft (36.6 m) length and the abutment pillar size is 104 ft (31.7 m) wide by 120 ft (36.6 m) length rib to rib. The proposed numerical modelling procedure presented in this paper can be a viable alternative and applied to other similar projects in order to determine an optimal pillar size for protecting gas well in longwall mining area.

  相似文献   
27.
Kerosene is common adulterant utilized for mixing with diesel. Five fuel-adulterant mixtures in different proportions by volume were prepared and individually tested for density and kinematic viscosity. The mixtures were administered to six light cargo vehicles and the tail pipe exhaust emission was tested for opacity value. No appreciable density variation at different levels of adulteration was observed. Density was within the prescribed value even at higher adulteration. Considerable decrease in kinematic viscosity, a departure from prescribed viscosity, was noted at higher adulteration level. The percent opacity value decreased sharply even at small level of adulteration. The probable amount of kerosene present as an adulterant in diesel dispensed at filling stations in Kathmandu city ranged between 35% and 50%. The observations suggest density test is not a good indicator of diesel adulteration. Kinematic viscosity and opacity value are useful diesel adulteration test parameters. Existing diesel adulteration warrants initiation of strict compliance regulation.  相似文献   
28.
We have studied the attenuation characteristics of eastern Himalaya and southern Tibet by using local earthquake data set that consists of 123 well-located events, recorded by the Himalayan Nepal Tibet Seismic Experiment operated during 2001–2003. We have used single backscattering model to calculate frequency-dependent values of coda Q (\(Q_\mathrm{c}\)). The estimation of \(Q_\mathrm{c}\) is made at central frequencies 2, 4, 8 and 12 Hz through five lapse time windows from 10 to 50 s starting at double the travel time of the S-wave. The observed \(Q_\mathrm{c}\) is found to be strongly frequency-dependent and follows a similar trend as observed in other tectonically active parts of the Himalaya. The trend of variation of \(Q_\mathrm{c}\) with lapse time and the corresponding apparent depths is also studied. Increase in \(Q_\mathrm{c}\) values with the lapse time suggests that the deeper part of the study region is less heterogeneous than the shallower part. The observed values of \(Q_0\) (\(Q_\mathrm{c}\) at 1 Hz) and frequency parameter n indicate that the medium beneath the study area is highly heterogeneous and tectonically very active. A regionalization of the estimated \(Q_0\) is carried out, and a contour map is prepared for the whole region. Some segments of Lesser Himalaya and Sub-Himalaya exhibit very low \(Q_0\) , while the whole Tethyan Himalaya and some parts of Greater Himalaya are characterized by low \(Q_0\) values. Our results are comparable with those obtained from tectonically active regions in the world.  相似文献   
29.
Hypsometric analysis of watershed (area-elevation analysis) has generally been used to reveal the stages of geomorphic development (stabilized, mature and young). The geologic stages of development and proneness of the watersheds for erosion are quantified by hypsometric integral. The estimation of hypsometric integral is carried out from the graphical plot of the measured contour elevation and encompassed area by using empirical formulae. In this study, efforts were made to estimate the hypsometric integral values of Shakkar river watershed which is a tributary of Narmada river located in Madhya Pradesh. The watershed was delineated into eight sub-watersheds and hypsometric analysis was carried out for all of them using digital contour maps, which was generated using Arc/Info GIS. The hypsometric integral values for all the sub-watersheds of Shakkar river ranges between 0.47 and 0.51. In the study area, only mature stage of erosion cycle is identified.  相似文献   
30.
A core from the Cambay Shale Formation of the Cambay Basin, containing immature Type III organic matter, was pyrolysed at 300°C for different durations of time to different maturation levels. Fractionation effects were studied employing a three-step extraction technique after removal of the expelled pyrolysate. The extractable organic matter (EOM) obtained on extraction of the whole core is assumed to be that present in open pores, while that obtained on finely crushing the sample is assumed to be that present in closed pores. The EOM obtained from 1 cm chips is termed EOM from semi-open pores. The gross composition of the pyrolysates expelled during pyrolysis is not similar to the oils reservoired in the area, and there is no significant fractionation observed between expelled pyrolysates and unexpelled EOM. Our study indicates movement of fluids between closed, semi-open and open pores. In both systems, there is a higher concentration of EOM in open pores than in semi-open and closed pores, and the fraction of EOM in open pores is much greater in the artificial system than in the natural system. Fractionation effects on n-alkane and isoprenoid hydrocarbon-based parameters were also studied. n-Alkenes are present in semi-open and closed pores of the immature core and in the core after it was pyrolysed to 300°C for 6 and 48 h, but are absent in the open pores. n-Alkenes are present in closed pores in the naturally matured core. Presence of n-alkenes in the pyrolysates expelled during the 6 and 48 h experiments, but their absence in the open pores of the core, indicates that expulsion also occurs through temporary microfractures during laboratory pyrolysis, whereas in the natural system expulsion from closed pores seems to be only via semi-open and open pores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号