首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   37篇
  国内免费   14篇
测绘学   52篇
大气科学   85篇
地球物理   169篇
地质学   190篇
海洋学   38篇
天文学   133篇
综合类   3篇
自然地理   101篇
  2024年   3篇
  2023年   8篇
  2022年   4篇
  2021年   24篇
  2020年   20篇
  2019年   33篇
  2018年   42篇
  2017年   27篇
  2016年   45篇
  2015年   35篇
  2014年   29篇
  2013年   48篇
  2012年   33篇
  2011年   31篇
  2010年   35篇
  2009年   53篇
  2008年   39篇
  2007年   36篇
  2006年   19篇
  2005年   20篇
  2004年   17篇
  2003年   19篇
  2002年   15篇
  2001年   5篇
  2000年   14篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1988年   2篇
  1987年   3篇
  1986年   8篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1979年   3篇
  1978年   3篇
  1977年   8篇
  1976年   6篇
  1975年   5篇
  1973年   4篇
  1971年   3篇
排序方式: 共有771条查询结果,搜索用时 15 毫秒
21.
Across the UK, sandy beaches and dunes protect coastal infrastructure from waves and extreme water levels during large-scale storms, while providing important habitats and recreational opportunities. Understanding their long-term evolution is vital in managing their condition in a changing climate. Recently, ground-penetrating radar (GPR) methods have grown in popularity in geomorphological applications, yielding centimetre-scale resolution images of near-surface stratigraphy and structure, thus allowing landscape evolution to be reconstructed. Additionally, abrupt changes in palaeo-environments can be visualized in three dimensions. Although often complemented by core data, GPR allows interpretations to be extended into areas with minimal ground-truth control. Nonetheless, GPR data interpretation can be non-intuitive and ambiguous, and radargrams may not initially resemble the expected subsurface geometry. Interpretation can be made yet more onerous when handling the large 3D data volumes that are facilitated with modern GPR technology. Here we describe the development of novel semi-automated GPR feature-extraction tools, based on ‘edge detection’ and ‘thresholding’ methods, which detect regions of increased GPR reflectivity which can be applied to aid in the reconstruction of a range Quaternary landscapes. Since reflectivity can be related to lithological and/or pore fluid changes, the 3D architecture of the palaeo-landscape can be reconstructed from the features extracted from a geophysical dataset. We present 500 MHz GPR data collected over a buried Holocene coastal dune system in North Wales, UK, now reclaimed for use as an airfield. Core data from the site, reaching a maximum depth 2 m, suggest rapid vertical changes from sand to silty-organic units, and GPR profiles suggest similar lateral complexity. By applying thresholding methods to GPR depth slices, these lateral complexities are effectively and automatically mapped. Furthermore, automatic extraction of the local reflection power yields a strong correlation with the depth variation of organic content, suggesting it is a cause of reflectivity contrast. GPR-interpolated analyses away from core control thus offer a powerful proxy for parameters derived from invasive core logging. The GPR data collected at Llanbedr airfield highlight a complex dune system to a depth of 2.8 m, probably deposited in several phases over ~700 years, similar to elsewhere in North Wales.  相似文献   
22.
23.
A simple sticky-particle numerical model has been developed in order to check whether extended structures of gas created due to the dynamical evolution of the Galaxy and the Magellanic Clouds system can be explained as remnants of a tidal interaction. Influence of dissipative nature of gaseous medium has been taken into account. The most remarkable features are: the Magellanic Stream, the common HI envelope surrounding both the LMC and SMC and the bridge extended between the Clouds. In contrast to previous works of Murai and Fujimoto (1980), Gardiner et al. (1994) and H and Rohlfs (1994) no presumptions were done on the actual galactocentric velocities of the Magellanic Clouds. The mean values of the LMC and SMC velocity vectors obtained from the Hipparcos proper motion measurements (Kroupa and Bastian, 1997) were used in order to verify whether they allow to reproduce the observed HI distribution. Numerical simulations showed that tidal forces are really significant for the evolution of extended structures such as the Magellanic Stream but this approach becomes unsufficient for the internal regions of galaxies where self-gravity and dissipative properties of the gas cannot be neglected. More precise proper motion measurements are urgently needed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
24.
This paper critically reviews and intercompares land surface schemes (LSSs) as used in atmospheric general circulation models (AGCMs) to simulate soil moisture and its response to a warmer climate, and potential evapotranspiration approaches as used in operational soil moisture monitoring and in predicting the response of soil moisture to a warmer climate. AGCM predictions of overall soil moisture change are in broad agreement but disagree sharply in some regions. Intercomparison projects have sought to evaluate the LSSs used by AGCMs for both accuracy and consistency. These studies have found that different LSSs can produce very different simulations even when supplied with identical atmospheric forcing. As well, LSSs that produce similar surface results from present-day or control climates often diverge when forced with climatic change data. Furthermore, no single LSS has been identified that produces an adequate simulation of all of temperature, moisture, evapotranspiration and runoff. AGCM LSSs must resolve the surface energy balance (SEB) in order to compute realistic heat fluxes between with the atmospheric model. LSSs have been used with AGCMs in both on-line (fully coupled) and off-line modes. In off-line climatic change experiments, AGCM predictions of atmospheric temperature and precipitation have been used, along with model downward radiative fluxes at the surface, to drive their own uncoupled LSS. However, there are simple non-energy-balance methods for estimating evapotranspiration that have been traditionally used in agricultural and meteorological applications. These schemes compute a potential evapotranspiration (PE) based on temperature and/or net radiation inputs, with the PE modified based on the availability of soil moisture. Operational PE approaches have also been used with AGCM data in off-line climate change experiments. The advantages of this approach are that it is simpler and requires less information, although (like the off-line SEB approach) it leaves out the simulation of feedbacks between the surface and the atmosphere.Although the SEB approach is essential for LSSs that must be coupled to AGCMs, this does not necessarily make it superior to an off-line operational PE LSS when it comes to quantities such as soil moisture. The quality of current observational data is insufficient to demonstrate that either approach is better than the other. Both approaches should continue to be used and intercompared when predicting the impacts of climatic change on soil moisture.  相似文献   
25.
A tax on success? Privatization, employment and the 'Windfall Tax'   总被引:1,自引:0,他引:1  
Adam Tickell 《Area》1998,30(1):83-90
  相似文献   
26.
Landslide inventory maps are necessary for assessing landslide hazards and addressing the role slope stability plays in landscape evolution over geologic timescales. However, landslide inventory maps produced with traditional methods — aerial photograph interpretation, topographic map analysis, and field inspection — are often subjective and incomplete. The increasing availability of high-resolution topographic data acquired via airborne Light Detection and Ranging (LiDAR) over broad swaths of terrain invites new, automated landslide mapping procedures. We present two methods of spectral analysis that utilize LiDAR-derived digital elevation models of the Puget Sound lowlands, Washington, and the Tualatin Mountains, Oregon, to quantify and automatically map the topographic signatures of deep-seated landslides. Power spectra produced using the two-dimensional discrete Fourier transform and the two-dimensional continuous wavelet transform identify the characteristic spatial frequencies of deep-seated landslide morphologic features such as hummocky topography, scarps, and displaced blocks of material. Spatial patterns in the amount of spectral power concentrated in these characteristic frequency bands highlight past slope instabilities and allow the delineation of landslide terrain. When calibrated by comparison with detailed, independently compiled landslide inventory maps, our algorithms correctly classify an average of 82% of the terrain in our five study areas. Spectral analysis also allows the creation of dominant wavelength maps, which prove useful in analyzing meter-scale topographic expressions of landslide mechanics, past landslide activity, and landslide-modifying geomorphic processes. These results suggest that our automated landslide mapping methods can create accurate landslide maps and serve as effective, objective, and efficient tools for digital terrain analysis.  相似文献   
27.
Most of the literature to date proposes approximations to the determinant of a positive definite × n spatial covariance matrix (the Jacobian term) for Gaussian spatial autoregressive models that fail to support the analysis of massive georeferenced data sets. This paper briefly surveys this literature, recalls and refines much simpler Jacobian approximations, presents selected eigenvalue estimation techniques, summarizes validation results (for estimated eigenvalues, Jacobian approximations, and estimation of a spatial autocorrelation parameter), and illustrates the estimation of the spatial autocorrelation parameter in a spatial autoregressive model specification for cases as large as n = 37,214,101. The principal contribution of this paper is to the implementation of spatial autoregressive model specifications for any size of georeferenced data set. Its specific additions to the literature include (1) new, more efficient estimation algorithms; (2) an approximation of the Jacobian term for remotely sensed data forming incomplete rectangular regions; (3) issues of inference; and (4) timing results.  相似文献   
28.
The HCN emission features near 3 μm recently detected by Geballe et al. (2003, Astrophys. J. 583, L39) are analyzed with a model for fluorescence of sunlight in the ν3 band of HCN. The emission spectrum is consistent with current knowledge of the atmospheric temperature profile and the HCN distribution inferred from millimeter-wave observations. The spectrum is insensitive to the abundance of HCN in the thermosphere and the thousand-fold enhancement relative to photochemical models suggested by Geballe et al. (2003, Astrophys. J. 583, L39) is not required to explain the observations. We find that the spectrum can be matched with temperatures from 130 to 200 K, with slightly better fits at high temperature, contrary to the temperature determination of 130±10 K of Geballe et al. (2003, Astrophys. J. 583, L39). The HCN emission spectrum is sensitive to the collisional de-excitation probability, P10, for the ν3 state and we determine a value of 10−5 with an accuracy of about a factor of two. Analysis of absorption lines in the C2H2ν3 band near 3 μm, detected in the same spectrum, indicate a C2H2 mole fraction near 0.01 μbar of 10−5 for P10=10−4. The derived mole fraction, however, is dependent upon the value adopted for P10 and lower values are required if P10 at Titan temperatures is less than its room temperature value.  相似文献   
29.
Seasat altimetry profiles across the Falkland-Agulhas fracture zone (FZ) and the Ascension FZ in the South Atlantic were examined for evidence of step-like geoid offsets predicted from thermal modeling of the lithosphere. The geoid profiles exhibit much short-wavelength power and the step-like offsets are often small, making reliable estimation of the heights of the observed geoid offsets difficult. The offsets were estimated by the least-squares fitting of quadratic curves incorporating a step function to the altimetry profiles. A preferred offset value was determined for each profile by taking the average of step heights computed with various distances around the fracture zone excluded from the fit. The age of the crust surrounding the fracture zones, necessary for computing a theoretical geoid offset, was determined from surface ship magnetic anomaly data and from existing ocean floor age maps.Observed variations in geoid step height with age of the lithosphere are not consistent with those predicted from standard thermal plate models. For ages less than 30 Ma, the step offsets across both fracture zones decrease in a manner appropriate for an unusually thin plate with a thickness of 50–75 km. At greater ages, the offsets show complex behavior that may be due to bathymetric features adjacent to the fracture zones. Similar geoid patterns on opposite branches of the Falkland-Agulhas FZ are indicative of processes that act symmetrically on both sides of the Mid-Atlantic Ridge. This behavior of the geoid is consistent both with small-scale convection occurring beneath the lithosphere and with bathymetric features originally produced along the ridge crest and now located symmetrically on opposite sides of the ridge. The west flank of the Ascension FZ displays a regrowth in step height at about 40 Ma consistent with small-scale convection and in agreement with other studies of Pacific and South Atlantic fracture zones.  相似文献   
30.
Williamson  Daniel  Blaker  Adam T.  Hampton  Charlotte  Salter  James 《Climate Dynamics》2015,45(5-6):1299-1324
Climate Dynamics - We describe the method of history matching, a method currently used to help quantify parametric uncertainty in climate models, and argue for its use in identifying and removing...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号