首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89364篇
  免费   1278篇
  国内免费   574篇
测绘学   1859篇
大气科学   5943篇
地球物理   17141篇
地质学   32235篇
海洋学   8145篇
天文学   20563篇
综合类   238篇
自然地理   5092篇
  2022年   643篇
  2021年   1097篇
  2020年   1174篇
  2019年   1324篇
  2018年   2659篇
  2017年   2483篇
  2016年   2850篇
  2015年   1457篇
  2014年   2770篇
  2013年   4703篇
  2012年   3028篇
  2011年   3897篇
  2010年   3536篇
  2009年   4464篇
  2008年   3885篇
  2007年   3979篇
  2006年   3687篇
  2005年   2656篇
  2004年   2597篇
  2003年   2413篇
  2002年   2394篇
  2001年   2031篇
  2000年   2012篇
  1999年   1590篇
  1998年   1666篇
  1997年   1518篇
  1996年   1297篇
  1995年   1290篇
  1994年   1089篇
  1993年   1053篇
  1992年   972篇
  1991年   998篇
  1990年   970篇
  1989年   847篇
  1988年   789篇
  1987年   923篇
  1986年   811篇
  1985年   989篇
  1984年   1115篇
  1983年   1072篇
  1982年   992篇
  1981年   924篇
  1980年   835篇
  1979年   786篇
  1978年   761篇
  1977年   652篇
  1976年   653篇
  1975年   641篇
  1974年   618篇
  1973年   681篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
251.
252.
253.
254.
The level of Kluane Lake in southwest Yukon Territory, Canada, has fluctuated tens of metres during the late Holocene. Contributions of sediment from different watersheds in the basin over the past 5,000 years were inferred from the elemental geochemistry of Kluane Lake sediment cores. Elements associated with organic material and oxyhydroxides were used to reconstruct redox fluctuations in the hypolimnion of the lake. The data reveal complex relationships between climate and river discharge during the late Holocene. A period of influx of Duke River sediment coincides with a relatively warm climate around 1,300 years BP. Discharge of Slims River into Kluane Lake occurred when Kaskawulsh Glacier advanced to the present drainage divide separating flow to the Pacific Ocean via Kaskawulsh and Alsek rivers from flow to Bering Sea via tributaries of Yukon River. During periods when neither Duke nor Slims river discharged into Kluane Lake, the level of the lake was low and stable thermal stratification developed, with anoxic and eventually euxinic conditions in the hypolimnion.  相似文献   
255.
Spectrum–Röntgen–Gamma (SRG) is a space observatory designed to observe astrophysical objects in the X-ray range of the electromagnetic spectrum. SRG is planned to be launched in 2019 by a Proton-M launch vehicle with a DM3 upper stage. The spacecraft will be delivered to an orbit around the Sun–Earth collinear libration point L2 located at a distance of ~1.5 million km from the Earth. Although the SRG launch scheme has already been determined at present, in this paper we consider an alternative spacecraft transfer scenario using a lunar gravity-assist maneuver. The proposed scenario allows a oneimpulse transfer from a low Earth orbit to a small-amplitude orbit around the libration point to be performed while fulfilling the technical constraints and the scientific requirements of the mission.  相似文献   
256.
A method of estimating the surface-brightness of globular cluster with equidensity curves is described. (Russian abstract)  相似文献   
257.
The COSPIN/KET experiment onboard Ulysses has been monitoring the flux of 3–20 MeV electrons in interplanetary space since the launch of Ulysses in October 1990. The origin of these electrons has been known for a long time to be the Jovian magnetosphere. Propagation models assuming interplanetary diffusion of these electrons in the ideal Parker magnetic field were successfully developed in the past. The average electron flux measured by our experiment agrees with these models for most of the times before and after the Jovian flyby of February 1992, i.e. in and out of the ecliptic down to 28° S of heliographic latitude for the last data presented here (end of March 1993).However, in addition to this average flux level well accounted for by diffusion in an ideal Parker field, we have found very short duration electron events which we call “jets”, characterized by: (i) a sharp increase and decrease of flux; (ii) a spectrum identical to the electron spectrum in the Jovian magnetosphere; and (iii) a strong first-order anisotropy. These jets only occur when the magnetic field at Ulysses lies close to the direction of Jupiter, and most of the time (86% of the events) points outwards from Jupiter, i.e. has the same polarity after the flyby as the Jovian dipole (North to South). These events are interpreted as crossings by Ulysses of magnetic flux tubes or sheets directly connected to the location of the Jovian magnetosphere from which electrons escape into interplanetary space. The average thickness of these sheets is 1011cm or 14 Jovian radii. These jets are clearly identified up to 0.4 a.u. before the Jupiter flyby in the ecliptic plane, and up to 0.9 a.u. out of the ecliptic.Moreover, the characteristic rocking of the electron spectrum in the Jovian magnetosphere with a 10 h periodicity is found to be present during the jets, and predominantly during them. In the past, this modulation has been reported to be present in interplanetary space as far as 1 a.u. upwind of Jupiter, a fact which cannot be accounted for by diffusion in the average Parker magnetic field. Our finding gives a simple explanation to this phenomenon, the 10 h modulation being carried by the “jet” electrons which travel with no appreciable diffusion along magnetic field lines with a direction far from the ideal Parker spiral.  相似文献   
258.
Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.  相似文献   
259.
An experiment is reported in which heat was released as a passive tracer from an elevated lateral line source within a model plant canopy, with h s = 0.85 h c (h s and h c being the source and canopy heights, respectively). A sensor assembly consisting of three coplanar hot wires and one cold wire was used to measure profiles of mean temperature % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaana% aabaGaeqiUdehaaiaacMcaaaa!390C!\[(\overline \theta )\], temperature variance (Σθ 2), vertical and streamwise turbulent heat fluxes, and third moments of wind and temperature fluctuations. Conclusions were:
  1. Despite the very heterogeneous flow within the canopy, the observed dispersive heat flux (due to spatial correlation between time-averaged temperature and vertical velocity) was small. However, there is evidence from the plume centroid (which was lower than h s at the source) of systematic recirculating motions within the canopy.
  2. The ratio % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiabeI7aXjaab2gacaqGHbGaaeiEaaqabaGccaGGVaWaa0aa% aeaacqaH4oqCaaWaaSbaaSqaaiaab2gacaqGHbGaaeiEaaqabaaaaa!41DF!\[\sigma _{\theta {\text{max}}} /\overline \theta _{{\text{max}}} \] (of maximum values on vertical profiles) decreased from 1 near the source to an asymptotic value of 0.4 far downstream, in good agreement with previous experimental and theoretical work for concentration fluctuations in the surface layer well above the canopy.
  3. The eddy diffusivity for heat from the line source (K HL ) increased, downstream of the source, to a nearly constant ‘far-field’ vertical profile. Within the canopy, the far-field K HL was an order of magnitude larger than K HP , the equivalent diffusivity for a plane source; well above the canopy, the two were equal. The time scale defined by (far-field K HL )/(vertical velocity variance) was independent of height within the canopy.
  4. Budgets for temperature variance, vertical heat flux and streamwise heat flux are remarkably similar to the equivalent budgets for an elevated line source in the surface layer well above the canopy, except in the lower part of the canopy in the far field, where vertical transport is much more important than in the surface layer.
  5. A random flight simulation of the mean height and depth of the temperature plume was generally in good agreement with experiment. However, details of the temperature and streamwise turbulent heat flux profiles were not correct, suggesting that the model formulation needs to be improved.
  相似文献   
260.
Debris in basal ice produced by glaciohydraulic supercooling is typically characterized by high proportions of silt. A prominent hypothesis for this silt‐dominance is that frazil ice growing in supercooled water preferentially traps silt from sediment‐laden water percolating through it. It has therefore been suggested that silt‐dominance may be diagnostic of glaciohydraulic supercooling. The aim of our work is to test this hypothesis that freezing sediment‐laden supercooled water necessarily produces ice dominated by silt. We do this by simulating two freezing processes under laboratory conditions: (1) percolation of sediment‐laden water through frazil ice; (2) turbulent supercooling and subsequent freezing of sediment‐laden water. In experiments repeated using different particle sizes (sand, silt and clay in individual experiments) both processes entrained sand most effectively and silt least effectively. In experiments using a sediment mixture dominated by medium to coarse silt, both processes produced ice facies dominated by particle sizes between fine sand and coarse silt. These results suggest that silt‐dominance should therefore not be expected for supercooled freeze‐on, and is not a reliable diagnostic signature for supercooling. The silt‐dominated character of basal ice types associated with supercooling may result from other controls such as a silt‐dominated sediment supply or subglacial water flow rates, rather than the freezing process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号