首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107944篇
  免费   1482篇
  国内免费   864篇
测绘学   2400篇
大气科学   7649篇
地球物理   21117篇
地质学   38831篇
海洋学   9604篇
天文学   24269篇
综合类   274篇
自然地理   6146篇
  2022年   663篇
  2021年   1145篇
  2020年   1231篇
  2019年   1393篇
  2018年   2875篇
  2017年   2686篇
  2016年   3205篇
  2015年   1657篇
  2014年   3056篇
  2013年   5505篇
  2012年   3342篇
  2011年   4400篇
  2010年   3959篇
  2009年   5077篇
  2008年   4416篇
  2007年   4457篇
  2006年   4255篇
  2005年   3088篇
  2004年   3032篇
  2003年   2868篇
  2002年   2845篇
  2001年   2478篇
  2000年   2494篇
  1999年   1983篇
  1998年   1998篇
  1997年   1910篇
  1996年   1657篇
  1995年   1632篇
  1994年   1401篇
  1993年   1304篇
  1992年   1257篇
  1991年   1279篇
  1990年   1260篇
  1989年   1134篇
  1988年   1050篇
  1987年   1241篇
  1986年   1125篇
  1985年   1325篇
  1984年   1516篇
  1983年   1465篇
  1982年   1344篇
  1981年   1276篇
  1980年   1147篇
  1979年   1106篇
  1978年   1099篇
  1977年   970篇
  1976年   928篇
  1975年   903篇
  1974年   934篇
  1973年   995篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
161.
By considering a simple fluid model, we investigate the role of phase transitions in the ISM on the galaxy- scale gas dynamics. Cooling and heating timescales in the ISM are typically shorter than typical galactic rotation timescales, so the individual phases in the ISM can be assumed to be in temperature equilibrium with the radiation field. Using this approximation we can construct an equation of state which depends upon the average density and mass fractions in the individual phases. Previous studies suggest that there is an equilibrium phase fraction as a function of pressure. We incorporate evolution towards this equilibrium state as a relaxation term with a time to obtain equilibrium . We derive a condition in terms of a critical Mach number when one dimensional shocks should be continuous. For small values of the relaxation time we show that the relaxation term acts like a viscosity. We show with one dimensional simulations that increasing causes shocks to become smoother. This work suggests that phase changes can strongly effect the gas dynamics of the ISM across spiral arms and bars.  相似文献   
162.
163.
Disturbances in the heat flow in the solar convection zone are calculated with a turbulent thermal diffusion coefficient based on a mixing length approximation. As a consequence of the radiative boundary condition at the surface and the strong increase of the diffusion coefficient with depth, the convection zone resembles a thermally superconducting shell enclosed between a thin surface layer and an interior core of low thermal conductivity. Thermal disturbances originating in the convection zone do not penetrate into the interior, and penetrate only weakly through the solar surface. A thermally isolating obstacle buried entirely in the convection zone casts a shadow of reduced temperature at the solar surface; the brightening surrounding this shadow is undetectable. The shadow is weak unless the object is located close to the surface (less than 2000 km). Assuming a sunspot to be an area of reduced thermal conductivity which extends a finite depth into the convection zone, the heat flow around this obstacle is calculated. The heat flux blocked below the spot (missing flux) spreads over a very extended area surrounding the spot. The brightening corresponding to this missing flux is undetectable if the reduction of the thermal conductivity extends to a depth greater than 1000 km. It is concluded that no effect other than a decrease of the convective efficiency is needed to explain the temperature change observed at the solar surface in and around a sunspot. The energy balance is calculated between magnetic flux tubes, oriented vertically in the solar surface, (magnetic elements in active regions and the quiet network) and their surroundings. Near the visible surface radiation enters the tube laterally from the surrounding convection zone. The heating effect of this influx is important for small tubes (less than a few arcseconds). Due to this influx tubes less than about 1 in diameter can appear as bright structures irrespective of the amount of heat conveyed along the tube itself. Through the lateral influx, small tubes such as are found in the quiet network act as little leaks in the solar surface through which an excess heat flux escapes from the convection zone.  相似文献   
164.
The possible correlation noted between the intrinsic quasar luminosity and the absorption line expulsion velocity is re-examined using homogeneous data sets for metal and L only line systems. The method of analysis is chosen to enable any reasonable form of correlation to be found. No correlation is detected at a confidence level >10%.  相似文献   
165.
We investigate, via a two-dimensional (nonplanar) MHD simulation, a situation wherein a bipolar magnetic field embedded in a stratified solar atmosphere (i.e., arch-filament-like structure) undergoes symmetrical shear motion at the footpoints. It was found that the vertical plasma flow velocities grow exponentially leading to a new type of global MHD-instability that could be characterized as a Dynamic Shearing Instability, with a growth rate of about 8{ovV} A a, where {ovV} A is the average Alfvén speed and a –1 is the characteristic length scale. The growth rate grows almost linearly until it reaches the same order of magnitude as the Alfvén speed. Then a nonlinear MHD instability occurs beyond this point. This simulation indicates the following physical consequences: the central loops are pinched by opposing Lorentz forces, and the outer closed loops stretch upward with the vertically-rising mass flow. This instability may apply to arch filament eruptions (AFE) and coronal mass ejections (CMEs).To illustrate the nonlinear dynamical shearing instability, a numerical example is given for three different values of the plasma beta that span several orders of magnitude. The numerical results were analyzed using a linearized asymptotic approach in which an analytical approximate solution for velocity growth is presented. Finally, this theoretical model is applied to describe the arch filament eruption as well as CMEs.  相似文献   
166.
167.
168.
F.A. Gifford  R.P. Hosker  K.S. Rao 《Icarus》1978,36(1):133-146
The spreading angle of a number of light and dark Martian streaks is determined from selected Mariner 9 images. The resulting frequency distributions of spreading half-angles have maxima at ~5° for light, and ~7° for dark streaks; however the dark streaks have a secondary maximum spreading angle at ~14°. The smaller values, which include most streaks, are interpreted as crater-wake spreading phenomena. The larger value, found in only a few dark streaks or “tails,” may result from atmospheric diffusion and subsequent deposition of material from isolated sources such as vents or blowouts. An atmospheric diffusion-deposition analysis is presented, assuming this streak origin, from which it is possible to deduce the eddy diffusivity, K, in Mars' boudary layer. Calculated K values are found to agree with various theoretical estimates. They lie in the range 107 and 109 cm2 sec?1 and exhibit the proper scale dependence. Thus it appears that, in addition to streak-derived wind direction patterns and speed information, it is possible in a few cases to derive information on Mars' boundary-layer turbulence from streak-spreading measurements.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号