首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   72篇
  国内免费   68篇
测绘学   71篇
大气科学   86篇
地球物理   77篇
地质学   257篇
海洋学   51篇
天文学   1篇
综合类   33篇
自然地理   63篇
  2024年   5篇
  2023年   19篇
  2022年   27篇
  2021年   19篇
  2020年   16篇
  2019年   21篇
  2018年   11篇
  2017年   20篇
  2016年   11篇
  2015年   11篇
  2014年   31篇
  2013年   19篇
  2012年   19篇
  2011年   15篇
  2010年   17篇
  2009年   26篇
  2008年   23篇
  2007年   20篇
  2006年   10篇
  2005年   16篇
  2004年   22篇
  2003年   11篇
  2002年   6篇
  2001年   5篇
  2000年   19篇
  1999年   14篇
  1998年   19篇
  1997年   20篇
  1996年   22篇
  1995年   22篇
  1994年   24篇
  1993年   15篇
  1992年   11篇
  1991年   15篇
  1990年   13篇
  1989年   13篇
  1988年   3篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1958年   1篇
  1955年   1篇
排序方式: 共有639条查询结果,搜索用时 15 毫秒
51.
针对塑料排水板(PVD)安装热源能提升PVD性能、加速竖井地基固结这一工程现象,基于热-水-应力 (T-H-M) 三场全耦合的有限元方法来模拟利用热源进行地基处理新技术(PVTD)。首先,以微分形式与等效弱形式分别给出T-H-M耦合控制方程,并推导出其有限元方程组。然后在多场耦合有限元软件中建立饱和土的T-H-M全耦合模型,并通过与已有解析解比较,验证了模型正确性。最后,对一个经典有涂抹区的竖井地基算例,分不耦合温度(UT)、耦合温度但不考虑其对饱和土物性影响(CT)、耦合温度考虑温度对饱和土渗透性影响(CTP) 3种情况进行固结计算分析。研究结果表明,相对于无热源竖井地基,CT情况下由于热源产生的附加孔隙水压力,固结速度略有下降;CTP情况下,由于热源有效改善涂抹区的渗透性能,竖井地基固结速率明显加快。上述研究结论从理论上较好地阐明了PVTD的作用机制。  相似文献   
52.
论述了贵州省织金矿区龙潭组砂岩粒度特征,分析了矿区含煤地层的沉积环境.  相似文献   
53.
54.
依据岩性岩相研究、孔隙度研究、物探测井解译等成果,对鄂尔多斯白垩系盆地含水层系统的结构进行了划分与研究。结果表明:盆地北部沙漠高原区为单一结构,表现为强富水与中等富水含水层在垂向上叠置与组合,无区域性连续稳定的隔水层,由下到上构成含水统一体;南部黄土高原区为多层结构,表现为含水层与隔水层上下叠置,垂向水文地质分层明显;盆地南、北含水层结构的结构类型明显不同。利用孔隙度、渗透系数、单位涌水量3个参数,对含水层的富水性级别进行了划分,盆地中共划分出7个强富水含水层、7个中等富水含水层和2个弱富水含水层。盆地南、北比较,北部含水层孔隙度大,富水性强,地下水主要富集于盆地北部地区。垂向上比较,盆地北部由上到下,孔隙度由大变小,富水性由强变弱,地下水主要富集于浅层和中层;南部上部罗汉洞组和下部洛河组孔隙度较大,富水性好,中部环河组相对较差,地下水主要富集于罗汉洞组和洛河组。  相似文献   
55.
鄂尔多斯高原植被生态分区及其水文地质意义   总被引:2,自引:0,他引:2  
保护生态环境是鄂尔多斯高原地下水可持续开发利用中亟待解决的问题。在查清植被生态群落分布特征的基础上,通过分析植被演替的自然驱动因素,将鄂尔多斯高原的植被生态划分为基岩台地植被生态水文地质区、沙盖基岩植被生态水文地质区、沙地植被生态水文地质区和滩地植被生态水文地质区。结果表明,气象和地形地貌控制着区内植被生态的总体分布格局,包气带和地下水因素控制着植被生态的演替,沙地植被生态和滩地植被生态的生长发育与地下水关系密切,是地下水开发时保护植被生态的靶区。  相似文献   
56.
贵州百花湖分层晚期有机质降解过程与溶解N2O循环   总被引:7,自引:0,他引:7       下载免费PDF全文
百花湖是一个具有季节性分层的富营养小型湖泊,在秋季湖水倒转期经常发生水质恶化事件,碳氮循环出现异常。文章研究特选择在秋初,湖泊分层开始消失时,测定了湖水中不同深度的N2O,CH4,CO2,有机和无机碳同位素以及其他化学参数变化。结果发现:采样时百花湖在约6m和16m深度附近出现了两个温度不连续层(SDL和PDL),并影响到有机颗粒的沉降和分解。相对而言,有较多的有机质在这两个层内发生降解,但降解的途径有所不同,上部主要是有氧降解,下部则主要是无氧降解过程。N2O的产生和消耗与有机质的降解过程完全对应:PDL层以上,ΔN2O与AOU的线性关系反映了N2O主要形成于硝化作用;PDL层以下反硝化作用导致N2O严重不饱和;PDL内位于硝化作用和反硝化作用过渡带的N2O峰,显然是硝化与反硝化联合作用的结果。PDL层内较大的CH4浓度变化梯度,说明嗜甲烷细菌可能通过氧化NH+4贡献了部分N2O。百花湖秋、冬季表层湖水N2O都是过饱和的,都是大气N2O的源,依据分子扩散模型计算湖泊N2O的释放通量在12~14μmol/m·day之间,秋、冬季没有明显的差别。秋季底层湖水的反硝化作用是湖泊N2O的汇,其消耗通量与表层的释放通量基本相当。  相似文献   
57.
柴波  陶阳阳  杜娟  黄平  王伟 《地球科学》2020,45(12):4630-4639
冰湖溃决型泥石流是高原山区特殊的地质灾害,以西藏聂拉木县嘉龙湖为例,建立了一套冰湖溃决型泥石流危险性评价方法.以喜马拉雅山区1970—2015年气温波动频次和聂拉木冰湖溃决历史事件预测了未来10年嘉龙湖溃决的时间概率.利用遥感影像识别嘉龙湖上方不稳定冰体的范围和规模,采用美国土木工程师协会推荐公式和修正的三峡库区涌浪计算方法分析了冰川滑坡产生的涌浪规模,从涌浪波压力和越顶水流推力两方面预测了冰碛坝发生失稳的可能性.采用FLO-2D模拟冰湖溃决泥石流的运动过程,以最大流速和泥深表达了嘉龙湖溃决泥石流的危险程度.评价结果表明:2002年嘉龙湖溃决事件与当年气温偏高有关,未来嘉龙湖发生溃决概率高;冰川滑坡激起涌浪能够翻越坝顶,并引起坝体快速侵蚀而溃决;冰湖溃决泥石流对聂拉木县城河道两侧54栋建筑造成威胁.评价方法实现了冰湖溃决型泥石流危险性的定量分析,评价结果对聂拉木县城泥石流防灾具有现实意义.   相似文献   
58.
在前人研究成果和野外调查基础上,对新资深大断裂变质带特征进行系统总结,从宏观构造、显微构造与组构、岩石矿物学、年代学和地球化学等多学科角度综合研究,分析了新资断裂带各类岩石组构成因,并建立了其活动演化期次。新资深大断裂变质带构造岩主要包括定向组构系列岩石和块状系列岩石,主要是由早期的韧性变形变质作用阶段和晚期的脆性破碎作用阶段先后作用形成。越城岭岩体西侧规模巨大的花岗片麻岩带应属新资深大断裂变质带的一部分,属早期活动的产物,其原岩为越城岭岩体,为断裂变质和动力热流变质作用形成。韧性剪切系列岩石按变形变质强度可分为高温高压韧性剪切带和中温高压韧性剪切带,表明韧性剪切作用具有多期性。新资断裂带活动演化主要经历了四个阶段,始于加里东期,至喜山期均有活动,现在的新资断裂带是经过多个阶段不同类型变质作用由东向西不断迁移和相互叠加的结果。  相似文献   
59.
呼和湖凹陷是海拉尔盆地中一个重要的二级凹陷,其中存在2套主力烃源岩系(大磨拐河组和南屯组),均含有煤层,且煤层生烃条件优越,可以作为煤成气的有效源岩.基于对该凹陷中煤系源岩综合评价,笔者采用三维建模与构造模拟系统(TSM)对该凹陷进行盆地模拟,计算出了该区煤系源岩的生气潜量.研究表明,呼和湖凹陷中部和南部的煤层分布比较广泛,平均厚度为120 m左右;煤系源岩干酪根类型主要为Ⅲ型,属于倾气型烃源岩;该凹陷以未成熟-低成熟阶段的煤系源岩为主,R_o大部分在0.3%~0.9%;凹陷煤成气总量为1.6897×10~(12)m~3,具有很好的勘探开发前景.  相似文献   
60.
地表及海洋环境的镁同位素地球化学研究进展   总被引:1,自引:0,他引:1  
镁(Mg)是主要造岩元素,其地球丰度仅次于铁和氧。Mg几乎参与了地表所有圈层间的物理、化学和生物作用。随着多接收器等离子质谱等分析方法的改进和完善,Mg同位素显示出更加广阔的应用前景。同时,Mg独特的地球化学特征,使其在地表及海洋地球化学领域的应用日益广泛。本文主要就近几十年来Mg同位素在地表及海洋地球化学领域的研究现状、存在的问题以及发展趋势进行系统的总结与探讨。虽然,目前对Mg同位素的研究还处于早期阶段,但许多研究成果显示,Mg同位素具有很大潜力成为环境变化的新的指示工具。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号