首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
测绘学   18篇
地球物理   1篇
综合类   10篇
自然地理   4篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   8篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
全球平均气温未来情景的降尺度分析   总被引:2,自引:0,他引:2  
如何提高全球气候模拟数据的分辨率,以满足全球、区域乃至局地陆地生态系统全球变化响应的定量分析,是当今全球气候变化研究的核心内容之一。在全球尺度上,本文利用全球气象观测站点的气候数据和DEM 数据,对全球年平均气温与纬度和海拔高程之间相关性进行回归分析,建立全球气候降尺度空间模拟的统计转移函数,并与高精度曲面建模(HASM)方法进行集成,从而实现IPCC GCM HadCM3 的模拟数据从3.75° × 2.5°到 0.125° × 0.125°的降尺度处理。研究结果表明,在3 种气候情景的T1-T4 时段内,格陵兰岛平均气温在0℃以下的区域和南极洲平均气温在-35℃以下的区域均呈逐渐缩减趋势,赤道至南北回归线之间的平均气温大于40℃以上的区域呈逐渐增加趋势。其中,A1Fi 情景的平均气温上升速度最快,A2 情景次之,B2 情景的平均气温上升速度最慢。构建降尺度方法有效地将IPCC GCMs的粗分辨率的气候情景数据降尺度转换成高分辨率的气候数据,并克服和弥补了目前IPCC GCMs的模拟数据因分辨率低而不能对区域乃至局地气候变化的细节及趋势进行刻画的缺陷。  相似文献   
12.
基于激光扫描仪数据的建筑物立面特征信息提取   总被引:1,自引:0,他引:1  
黄磊  卢秀山  陈传法 《测绘科学》2006,31(6):141-142
基于激光扫描数据进行建筑物三维建模,可以采用扫描数据直接建模,配以影像纹理;也可用扫描数据提取建筑物立面的特征信息,配以单影像建模。而后者速度快,效率高,且能满足三维城市建模的一般精度要求。对于建筑物立面的激光扫描数据来说,具有数据量大,点云复杂等特点,提取建筑物特征信息具有一定难度。本文提出一种“水平点参照系”特征提取方法,这种方法运行速度快,能够减少数据量,有效剔除噪声,并得到实际应用的检验。  相似文献   
13.
LiDAR森林冠层高度模型凹坑去除方法   总被引:2,自引:0,他引:2  
王欣  陈传法 《测绘科学》2016,41(12):157-161
LiDAR技术被越来越多地应用于林业领域,而森林冠层高度模型作为其数据产品直接影响着森林参数的反演,但其存在的局部凹坑现象对森林参数信息的提取形成阻碍。针对此问题,该文对局部凹坑去除进行了研究。利用局部稳健加权回归对点云数据进行散点平滑处理,填充凹坑(无效值);再利用反距离加权插值生成冠层表面模型,使之与数字高程模型相减得到归一化高度点云,形成去除凹坑后的森林冠层高度模型。通过对研究区30个样方的点云数据处理,及与高斯滤波、中值滤波、分层高度最大值法进行比较,并提取树高等信息进行验证。结果显示,无论在去除凹坑效果还是保持原冠层顶部形态结构上,该方法都具有明显优势。  相似文献   
14.
中国气温与降水的时空变化趋势分析   总被引:6,自引:0,他引:6  
如何对离散分布的气象台站观测数据进行高精度曲面模拟,为生态系统及服务功能时空变化趋势模拟及其综合评估提供高质量、高分辨率的空间气候数据,以满足栅格层次上的生态系统过程模型、生态系统格局模型及生态系统综合评估模型的参数需求,一直是存于生态学界的难点问题.在对全国1964一2007年的752个气象台站长期观测的气温和降水数...  相似文献   
15.
为了降低采样点水平和高程误差对数字高程模型(digital elevation model,DEM)建模精度的影响,受总体最小二乘算法启发,以较高精度的多面函数(multiquadric function,MQ)为基函数,发展了整体最小二乘MQ算法(MQ-T),并分别借助数值实验和实例分析验证模型计算精度。数值实验中,以高斯合成曲面为研究对象,设计了受不同误差分量影响的采样数据,借助MQ-T曲面建模,并将计算结果与传统MQ进行比较。结果表明,当采样点仅受高程误差分量影响时,MQ-T计算结果精度与MQ相当;当采样数据受水平误差分量影响时,MQ-T计算结果中误差小于MQ中误差。实例分析中,以全站仪获取的采样数据为研究对象,借助MQ-T构建测区DEM,并将计算结果与传统插值算法进行比较,如反距离加权(inverse distance weighted,IDW)法、克里金(Kriging)法和澳大利亚国立大学DEM专用插值软件((Australian National University DEM,ANUDEM)法。精度分析表明,随着采样点密度降低,各种插值算法精度逐步降低;不管采样密度多少,MQ-T计算精度始终高于传统插值算法;对山体阴影图分析表明,MQ-T相比Kriging法有一定峰值削平现象。  相似文献   
16.
基于高精度曲面模型的DEM构建与误差分析   总被引:1,自引:1,他引:0  
陈传法 《遥感学报》2010,14(1):85-96
引入地形表达误差(terrain representation error,Etr),选择标准曲面和甘肃省董志塬地区作为研究对象,利用窗口分析法实现Etr的提取;用统计分析法得出Etr随网格分辨率变化的回归方程;根据误差传播定律计算DEM中误差。数值结果表明,该方法能更准确的计算HASM生成的DEM精度;相同的采样数下,HASM较传统方法(IDW,Spline和Kriging)能生成更高精度和分辨率的DEM。在难以获取已知数据的地区,HASM提供了生成相对准确DEM的高效工具。  相似文献   
17.
高精度曲面模型解算改进的Gauss-Seidel法   总被引:1,自引:1,他引:0  
为了降低HASM的时间复杂度,采用一种改进Gauss-Seidel(GS)算法(MGS)解算HASM方程组。首先,从理论上分析了MGS算法收敛速度快于GS算法,然后以高斯合成曲面作为研究对象,用四组模拟试验表明,相同的网格数、达到相同的计算精度,MGS算法计算时间小于GS算法,且两种算法时间差与模拟区域网格数呈二次线性相关;固定网格数,使用相同的内迭代或者外迭代次数,MGS算法精度高于GS算法,但增加内迭代或者外迭代次数,GS算法同样收敛;MGS算法计算时间与网格数呈线性相关。MGS算法能够有效解决HASM模拟大区域的计算时间瓶颈,提高HASM运算速度。以甘肃省董志塬某测区SRTM3作为研究对象,基于MGS的HASM用于模拟DEM表明,HASM精度要高于传统的插值方法。  相似文献   
18.
机载LiDAR点云是获取高质量数字高程模型(Digital Elevation Model, DEM)的主要数据源,而地表粗糙度作为DEM的主要派生产品,在地学研究中发挥了重要作用,但点云密度和插值方法对DEM及地表粗糙度精度影响程度并没有明确结论。为此,本文利用不同地形条件下的林区机载LiDAR点云为实验对象,将原始点云随机缩减为不同的采样密度,利用5种常用插值方法(克里金(Ordinary Kriging, OK),径向基函数(Radial Basis Function, RBF),不规则三角网(Triangulated Irregular Network, TIN),自然邻域(Natural Neighbor, NN)和反距离加权(Inverse Distance Weighting, IDW))构建各个测区不同采样密度条件下的DEM,并通过空间特征和统计特征两方面对DEM及其地表粗糙度精度分析。结果表明:(1) DEM插值算法的精度随点云密度缩减而降低,且数据量缩减至原始数据量的30%后,不同算法精度区别较为明显,其中,RBF和OK精度最优,IDW精度最低;(2) DEM误差与...  相似文献   
19.
目前,ICESat/GLAS是大尺度SRTM DEM精度评价的主要数据源.然而,现有的精度评价方法均忽略了2组数据的有效配准.为此,本文分析了数据配准前、后SRTM DEM整体精度差异,以及不同地形因子和土地利用类型对SRTM DEM影响程度.在此基础上,充分考虑SRTM DEM精度影响因素,分别借助多元线性回归(ML...  相似文献   
20.
高精度曲面建模应用中边界误差解决方案   总被引:2,自引:1,他引:1  
提出一种SAR数据检测桥面高度的反演方法。用几何射线描述桥梁散射机制, 依据去取向理论和分类参数分析, 得到SAR成像中桥梁结构目标单次、二次、三次散射的成像规律。通过SAR图像分类参数的聚类与细化、滤波和Hough变换直线检测算法, 检测出单次、二次和三次散射回波所成位置线图像, 进一步构成桥面高度的反演算法。用机载Pi-SAR数据反演了日本鸣门大桥的桥面高度和桥面宽度, 并与实测数据对比。按照该方法, 进一步采用星载ALOS-PALSAR数据检测中国东海大桥的桥面高度。反演方法是可行的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号