首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   4篇
  国内免费   6篇
测绘学   4篇
大气科学   14篇
地球物理   76篇
地质学   222篇
海洋学   37篇
天文学   82篇
综合类   2篇
自然地理   17篇
  2023年   2篇
  2022年   4篇
  2021年   13篇
  2020年   9篇
  2019年   18篇
  2018年   24篇
  2017年   24篇
  2016年   22篇
  2015年   19篇
  2014年   18篇
  2013年   34篇
  2012年   25篇
  2011年   27篇
  2010年   30篇
  2009年   32篇
  2008年   26篇
  2007年   26篇
  2006年   30篇
  2005年   14篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   7篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1992年   1篇
  1991年   4篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有454条查询结果,搜索用时 15 毫秒
1.
Grechnev  V.V.  Lesovoi  S.V.  Smolkov  G. Ya.  Krissinel  B.B.  Zandanov  V.G.  Altyntsev  A.T.  Kardapolova  N.N.  Sergeev  R.Y.  Uralov  A.M.  Maksimov  V.P.  Lubyshev  B.I. 《Solar physics》2003,216(1-2):239-272
The Siberian Solar Radio Telescope (SSRT) is one of the world's largest solar radio heliographs. It commenced operation in 1983, and since then has undergone several upgrades. The operating frequency of the SSRT is 5.7 GHz. Since 1992 the instrument has had the capability to make one-dimensional scans with a high time resolution of 56 ms and an angular resolution of 15 arc sec. Making one of these scans now takes 14 ms. In 1996 the capability was added to make full, two-dimensional images of the solar disk. The SSRT is now capable of obtaining images with an angular resolution of 21 arc sec every 2 min. In this paper we describe the main features and operation of the instrument, particularly emphasizing issues pertaining to the imaging process and factors limiting data quality. Some of the data processing and analysis techniques are discussed. We present examples of full-disk solar images of the quiet Sun, recorded near solar activity minimum, and images of specific structures: plages, coronal bright points, filaments and prominences, and coronal holes. We also present some observations of dynamic phenomena, such as eruptive prominences and solar flares, which illustrate the high-time-resolution observations that can be done with this instrument. We compare SSRT observations at 5.7 GHz, including computed `light curves', both morphologically and quantatively, with observations made in other spectral domains, such as 17 GHz radio images, Hα filtergrams and magnetograms, extreme-ultraviolet and X-ray observations, and dynamic radio spectra.  相似文献   
2.
3.
Based on geological and archaeological proxies from NW Russia and NE Estonia and on GIS‐based modelling, shore displacement during the Stone Age in the Narva‐Luga Klint Bay area in the eastern Gulf of Finland was reconstructed. The reconstructed shore displacement curve displays three regressive phases in the Baltic Sea history, interrupted by the rapid Ancylus Lake and Litorina Sea transgressions c. 10.9–10.2 cal. ka BP and c. 8.5–7.3 cal. ka BP, respectively. During the Ancylus transgression the lake level rose 9 m at an average rate of about 13 mm per year, while during the Litorina transgression the sea level rose 8 m at an average rate of about 7 mm per year. The results show that the highest shoreline of Ancylus Lake at an altitude of 8–17 m a.s.l. was formed c. 10.2 cal. ka BP and that of the Litorina Sea at an altitude of 6–14 m a.s.l., c. 7.3 cal. ka BP. The oldest traces of human activity dated to 8.5–7.9 cal. ka BP are associated with the palaeo‐Narva River in the period of low water level in the Baltic basin at the beginning of the Litorina Sea transgression. The coastal settlement associated with the Litorina Sea lagoon, presently represented by 33 Stone Age sites, developed in the area c. 7.1 cal. ka BP and existed there for more than 2000 years. Transformation from the coastal settlement back to the river settlement indicates a change from a fishing‐and‐hunting economy to farming and animal husbandry c. 4.4 cal. ka BP, coinciding with the time of the overgrowing of the lagoon in the Narva‐Luga Klint Bay area.  相似文献   
4.
5.
Doklady Earth Sciences - The results of isotope U–Pb dating of zircons from lherzolite and vein olivine orthopyroxenite composing the Roseta ultramafic massif are presented. The zircons...  相似文献   
6.
The formation conditions and age of the Sukhoi Log gold deposit are considered on the basis of new isotopic-geochemical data. The U-Pb isotopic study of zircon and monazite from high-grade ore and host black slates at the Sukhoi Log deposit was carried out with SIMS technique using a SHRIMP II instrument. Two generations of monazite are distinguished on the basis of optical and scanning electron microscopy, cathodoluminescence, and micro X-ray spectroscopy. Monazite I is characterized by black opaque porphyroblasts with microinclusions of minerals pertaining to metamorphic slates and structural attributes of pre- and synkinematic formation. Monazite II occurs only within the ore zone as transparent crystals practically free of inclusions and as rims around monazite I. The REE contents are widely variable in both generations. Porphyroblastic monazite I differs in low U and Th (0.01–0.7 wt % ThO2) contents, whereas transparent monazite II contains up to 4 wt % ThO2. The average weighted U-Pb isotopic age of monazite I is 650 ± 8.1 Ma (MSWD = 1.6; n = 9) and marks the time of metamorphism or catagenesis. The U-Pb age estimates of synore monazite II cover the interval of 486 ± 18 to 439 ± 17 Ma. Zircons of several populations from 0.5 to 2.6 Ga in age are contained in the ore. Most detrital zircon grains have porous outer rims composed of zircon and less frequent xenotime with numerous inclusions of minerals derived from slates. The peaks of 206Pb/238U ages in the most abundant zircon populations fall on 570 and 630 Ma and correspond to the age of newly formed metamorphic mineral phases. The discordant isotopic ages indicate that the U-ThPb isotopic system of ancient detrital zircons was disturbed 470–440 Ma ago in agreement with isotopic age of monazite II and the Rb-Sr whole -rock isochron age of black slates (447 ± 6 Ma). The new data confirm the superimposed character of the gold-quartz-sulfide mineralization at the deposit. Black shales of the Khomolkho Formation of the Bodaibo Synclinorium were affected by metamorphism over a long period; the peaks of metamorphism and catagenesis are dated at 570 and 650–630 Ma. The high-temperature ore formation was probably related to a hidden granitic pluton emplaced 450–440 Ma ago, that is, 200 Ma later than the events of greenschist metamorphism. Hercynian granitoid magmatism (320–270 Ma) did not exert a substantial effect on the U-Th-Pb isotopic system in accessory minerals from the ore and could not have been a major source of ore-forming fluids.  相似文献   
7.
We have studied the variability of the Hβ line and the adjacent continuum in the spectrum of the Seyfert galaxy Ark 120, based on spectral observations of the galaxy’s nucleus obtained in the Crimea in 1992–2005, supplemented by published data for 1988–1996. Irregular variability on various timescales (years to days) can be accompanied by periodic brightness variations in both the continuum and the Hβ line, with a period of P ~ 430 days and an amplitude of Δm ~ 0.2 m in the continuum, which were traced for more than 13 cycles. In total, in 1988–2005, the flux variations in the line lag those in the continuum by 55 ± 9 days if calculated from the peak of the cross correlation function, or by 72 ± 7 days, if calculated from the centroid of the CCF. The delay is correlated with the continuum brightness, increasing when the continuum flux increases. The Hβ line profiles indicate both a high degree of diversity and the presence of features that recur after various extended time intervals. Analysis of the evolution of the differences between each individual normalized line profile and the mean normalized profile indicates systematic motion of excesses relative to the average profile from negative to positive radial velocities. In contrast, parts of the Hβ line with low radiation relative to the mean normalized profile evolve in the opposite direction (from the red to the blue Hβ wing). This pattern is also typical for the rotating broad-line region, if this region has the form of a disk. The rotation period exceeds 9000–10000 days, or 25–27 years. The size of the broad-line region calculated form this period corresponds to a reverberation time of no fewer than 30 days, consistent with the results of cross-correlation analysis.  相似文献   
8.
Palaeomagnetic and geochronological studies on mafic rocks in the Lake Ladoga region in South Russian Karelia provide a new, reliably dated Mesoproterozoic key paleopole for the East European Craton (Baltica). U–Pb dating on baddeleyite gives a crystallisation age of 1452 ± 12 Ma for one of the studied dolerite dykes. A mean palaeomagnetic pole for the Mesoproterozoic dolerite dykes, Valaam sill and Salmi basalts yields a paleopole at 15.2°N, 177.1°E, A95 = 5.5°. Positive baked contact test for the dolerite dykes and positive reversal test for the Salmi basalts and for the dykes confirm the primary nature of the magnetisation. Comparison of this Baltica palaeopole with coeval paleomagnetic data for Laurentia and Siberia provides a revised palaeoposition of these cratons. The results verify that the East European Craton, Laurentia and Siberia were part of the supercontinent Columbia from the Late Palaeoproterozoic to the Middle Neoproterozoic.  相似文献   
9.
Here we characterize the magnetic properties of the Chelyabinsk chondrite (LL5, S4, W0) and constrain the composition, concentration, grain size distribution, and mineral fabric of the meteorite's magnetic mineral assemblage. Data were collected from 10 to 1073 K and include measurements of low‐field magnetic susceptibility (χ0), the anisotropy of χ0, hysteresis loops, first‐order reversal curves, Mössbauer spectroscopy, and X‐ray microtomography. The REM and REM′ paleointensity protocols suggest that the only magnetizations recorded by the chondrite are components of the Earth's magnetic field acquired during entry into our planet's atmosphere. The Chelyabinsk chondrite consists of light and dark lithologies. Fragments of the light lithology show logχ0 = 4.57 ± 0.09 (s.d.) (= 135), while the dark lithology shows 4.65 ± 0.09 (= 39) (where χ0 is in 10?9 m3 kg?1). Thus, Chelyabinsk is three times more magnetic than the average LL5 fall, but is similar to a subgroup of metal‐rich LL5 chondrites (Paragould, Aldsworth, Bawku, Richmond) and L/LL5 chondrites (Glanerbrug, Knyahinya). The meteorite's room‐temperature magnetization is dominated by multidomain FeNi alloys taenite and kamacite (no tetrataenite is present). However, below approximately 75 K remanence is dominated by chromite. The metal contents of the light and dark lithologies are 3.7 and 4.1 wt%, respectively, and are based on values of saturation magnetization.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号