首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
  国内免费   2篇
测绘学   6篇
大气科学   3篇
地球物理   23篇
地质学   34篇
海洋学   5篇
天文学   8篇
自然地理   4篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   9篇
  2016年   9篇
  2015年   7篇
  2014年   2篇
  2013年   3篇
  2012年   10篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2001年   1篇
  2000年   2篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有83条查询结果,搜索用时 218 毫秒
1.
The impact of warmer climate on melt and evaporation was studied for rainfed, snowfed and glacierfed basins located in the western Himalayan region. Hydrological processes were simulated under current climatic conditions using a conceptual hydrological model, which accounts for the rainfall–runoff, evaporation losses, snow and glacier melt. After simulations of daily observed streamflow (R2=0.90) for 6 years, the model was used to study the impact of warmer climate on melt and evaporation. Based on the future projected climatic scenarios in the study region, three temperature scenarios (T+1, T+2 and T+3 °C) were adopted for quantifying the effect of warmer climate. The comparison of the effect of warmer climate on different types of basins indicated that the increase in evaporation was the maximum for snowfed basins. For a T+2 °C scenario, the annual evaporation for the rainfed basins increased by about 12%, whereas for the snowfed basins it increased by about 24%. The high increase of the evaporation losses would reduce the runoff. It was found that under a warmer climate, melt was reduced from snowfed basins, but increased from glacierfed basins. For a T+2 °C scenario, annual melt was reduced by about 18% for the studied snowfed basin, while it increased by about 33% for the glacierfed basin. Thus, impact of warmer climate on the melt from the snowfed and glacierfed basins was opposite to each other. The study suggests that out of three types of basins, snowfed basins are more sensitive in terms of reduction in water availability due to a compound effect of increase in evaporation and decrease in melt. For a complex type of basin, the decrease in melt from seasonal snow may be counterbalanced by increase in melt from glaciers. However, on long-term basis, when the areal extent of glaciers will decrease due to higher melt rate, the water availability from the complex basins will be reduced.  相似文献   
2.
3.
A time-dependent numerical model allowing a simulation of the electric field and precipitation growth in a thundercloud of finite dimensions is described. It is found that slower growth rate (compared to an infinite thundercloud) of the electric field in a finite thundercloud permits larger size growth and higher terminal velocities of hydrometeors owing to an enhancement in precipitation intensity. Calculations also show that a higher maximum of the electric field is needed to slow down the larger particles produced in a thundercloud of finite dimensions. In particular, these solutions also include contribution of screening charge transport in thundercloud electrification.  相似文献   
4.
The heights of the daytime convective boundary layer (CBL), computed by a one-dimensional model for a bare soil surface at a semi-arid station,Anand, during the dry and hot summer month of May 1997, are presented. As input, the model requires surface heat flux, friction velocity and air temperature as functions of time. Temperature data at the one-metre level from a tower and sonic anemometer data at 9.5 m collected during the period 13–17 May 1997 in the Land Surface Processes Experiment (LASPEX-97) are used to compute hourly values of surface heat flux, friction velocity and Obukhov length following the operational method suggested by Holtslag and Van Ulden [J. Climate Appl. Meteorol. 22,517–529 (1983)]. The model has been tested with different values for the potential temperature gradient ( ) above the inversion. The model-estimated CBL heights comparefavourably with observed heights obtained from radiosonde ascents.  相似文献   
5.
In the absence of many gauging stations in the major and mighty river systems, there is a need for satellite-based observations to estimate temporal variations in the river water storage and associated water management. In this study, SARAL/AltiKa application for setting up hydraulic model (HEC-RAS) and river flow simulations over Tapi River India has been discussed. Waveform data of 40 Hz from Ka band altimeter has been used for water levels retrieval in the Tapi river. SARAL/AltiKa retrieved water levels were converted to discharge in the upstream location (track-926) using the rating curve available for the nearby gauging site and using linear spatial interpolation technique. Steady state simulations were done for various flow conditions in the upstream. Validation of river flow model was done in the downstream location (track-367) by comparing simulated and altimeter retrieved water levels (RMSE 0.67 m). Validated model was used to develop rating curve between water levels and simulated discharge for the downstream location which enables to monitor discharge variations from satellite platform in the absence of in situ observations. It has been demonstrated that SARAL/AltiKa data has potential for river flow monitoring and modeling which will feed for flood disaster forecasting, management and planning.  相似文献   
6.
The continuous increase in the emission of greenhouse gases has resulted in global warming, and substantial changes in the global climate are expected by the end of the current century. The reductions in mass, volume, area and length of glaciers on the global scale are considered as clear signals of a warmer climate. The increased rate of melting under a warmer climate has resulted in the retreating of glaciers. On the long‐term scale, greater melting of glaciers during the coming years could lead to the depletion of available water resources and influence water flows in rivers. It is also very likely that such changes have occurred in Himalayan glaciers, but might have gone unnoticed or not studied in detail. The water resources of the Himalayan region may also be highly vulnerable to such climate changes, because more than 50% of the water resources of India are located in the various tributaries of the Ganges, Indus and the Brahmaputra river system, which are highly dependent on snow and glacier runoff. In the present study, the snowmelt model SNOWMOD has been used to simulate the melt runoff from a highly glacierized small basin for the summer season. The model simulated the distribution and volume of runoff with reasonably good accuracy. Based on a 2‐year simulation, it is found that, on average, the contributions of glacier melt and rainfall in the total runoff are 87% and 13% respectively. The impact of climate change on the monthly distribution of runoff and total summer runoff has been studied with respect to plausible scenarios of temperature and rainfall, both individually and in combined scenarios. The analysis included six temperature scenarios ranging between 0·5 and 3 °C, and four rainfall scenarios (?10%, ?5%, 5%, 10%). The combined scenarios were generated using temperature and rainfall scenarios. The combined scenarios represented a combination of warmer and drier and a combination of warmer and wetter conditions in the study area. The results indicate that, for the study basin, runoff increased linearly with increase in temperature and rainfall. For a temperature rise of 2 °C, the increase in summer streamflow is computed to be about 28%. Changes in rainfall by ±10% resulted in corresponding changes in streamflow by ±3·5%. For the range of climatic scenarios considered, the changes in runoff are more sensitive to changes in temperature, compared with rainfall, which is likely due to the major contribution of melt water in runoff. Such studies are needed for proper assessment of available water resources under a changing climate in the Himalayan region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
7.
The general topology of the braiding in Saturn’s F ring is explained by invoking the theory of invariant surfaces to which a plasma would confine itself. This surface, in the framework of serf-consistent fields, is indeed generated by two helicoids turning in opposite directions and are braided.  相似文献   
8.
9.
We consider the luminosity and environmental dependence of structural parameters of lenticular galaxies in the near-infrared K band. Using a 2D galaxy image decomposition technique, we extract bulge and disc structural parameters for a sample of 36 lenticular galaxies observed by us in the K band. By combining data from the literature for field and cluster lenticulars with our data, we study correlations between parameters that characterize the bulge and the disc as a function of luminosity and environment. We find that scaling relations such as the Kormendy relation, photometric plane and other correlations involving bulge and disc parameters show a luminosity dependence. This dependence can be explained in terms of galaxy formation models in which faint lenticulars  ( M T > −24.5)  formed via secular formation processes that likely formed the pseudo-bulges of late-type disc galaxies, while brighter lenticulars  ( M T < −24.5)  formed through a different formation mechanism most likely involving major mergers. On probing variations in lenticular properties as a function of environment, we find that faint cluster lenticulars show systematic differences with respect to faint field lenticulars. These differences support the idea that the bulge and disc components fade after the galaxy falls into a cluster, while simultaneously undergoing a transformation from spiral to lenticular morphologies.  相似文献   
10.
This study characterizes the black carbon in Agra, India home to the Taj Mahal—and situated in the Indo-Gangetic basin.The mean black carbon concentration is 9.5 μg m~(-3)and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter(December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate(1–2 m s~(-1)) wind speed, as compared to calm or turbulent atmospheric conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号