首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
天文学   3篇
  2010年   2篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 453 毫秒
1
1.
The twin STEREO spacecraft provide a unique tool to study the temporal evolution of the solar-wind properties in the ecliptic since their longitudinal separation increases with time. We derive the characteristic temporal variations at ~?1 AU between two different plasma parcels ejected from the same solar source by excluding the spatial variations from our datasets. As part of the onboard IMPACT instrument suite, the SWEA electron experiment provides the solar-wind electron core density at two different heliospheric vantage points. We analyze these density datasets between March and August 2007 and find typical solar minimum conditions. After adjusting for the theoretical time lag between the two spacecraft, we compare the two density datasets. We find that their correlation decreases as the time difference increases between two ejections. The correlation coefficient is about 0.80 for a time lag of a half day and 0.65 for two days. These correlation coefficients from the electron core density are somewhat lower than the ones from the proton bulk velocity obtained in an earlier study, though they are still high enough to consider the solar wind as persistent after two days. These quantitative results reflect the variability of the solar-wind properties in space and time, and they might serve as input for solar-wind models.  相似文献   
2.
Opitz  A.  Karrer  R.  Wurz  P.  Galvin  A. B.  Bochsler  P.  Blush  L. M.  Daoudi  H.  Ellis  L.  Farrugia  C. J.  Giammanco  C.  Kistler  L. M.  Klecker  B.  Kucharek  H.  Lee  M. A.  Möbius  E.  Popecki  M.  Sigrist  M.  Simunac  K.  Singer  K.  Thompson  B.  Wimmer-Schweingruber  R. F. 《Solar physics》2009,256(1-2):365-377

The two STEREO spacecraft with nearly identical instrumentation were launched near solar activity minimum and they separate by about 45° per year, providing a unique tool to study the temporal evolution of the solar wind. We analyze the solar wind bulk velocity measured by the two PLASTIC plasma instruments onboard the two STEREO spacecraft. During the first half year of our measurements (March?–?August 2007) we find the typical alternating slow and fast solar wind stream pattern expected at solar minimum. To evaluate the temporal evolution of the solar wind bulk velocity we exclude the spatial variations and calculate the correlation between the solar wind bulk velocity measured by the two spacecraft. We account for the different spacecraft positions in radial distance and longitude by calculating the corresponding time lag. After adjusting for this time lag we compare the solar wind bulk velocity measurements at the two spacecraft and calculate the correlation between the two time-shifted datasets. We show how this correlation decreases as the time difference between two corresponding measurements increases. As a result, the characteristic temporal changes in the solar wind bulk velocity can be inferred. The obtained correlation is 0.95 for a time lag of 0.5 days and 0.85 for 2 days.

  相似文献   
3.
We extrapolate solar-wind bulk velocity measurements for different in-ecliptic heliospheric positions by calculating the theoretical time lag between the locations. The solar-wind bulk velocity dataset is obtained from in-situ plasma measurements by STEREO A and B, SOHO, Venus Express, and Mars Express. During their simultaneous measurements between 2007 and 2009 we find typical solar activity minimum conditions. In order to validate our extrapolations of the STEREO A and B data, we compare them with simultaneous in-situ observations from the other spacecraft. This way of cross-calibration we obtain a measure for the goodness of our extrapolations over different heliospheric distances. We find that a reliable solar-wind dataset can be provided in case of a longitudinal separation less than 65 degrees. Moreover, we find that the time lag method assuming constant velocity is a good basis to extrapolate from measurements in Earth orbit to Venus or to Mars. These extrapolations might serve as a good solar-wind input information for planetary studies of magnetospheric and ionospheric processes. We additionally show how the stream-stream interactions in the ecliptic alter the bulk velocity during radial propagation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号