首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
天文学   12篇
  2013年   2篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative/convective zone interface layers, the photosphere/chromosphere layers and the low corona. The mission delivers data and knowledge that no other known mission provides for understanding space weather and space climate and for advancing stellar physics (internal dynamics) and fundamental physics (neutrino properties, atomic physics, gravitational moments...). The science objectives are achieved using Doppler and magnetic measurements of the solar surface, helioseismic and coronographic measurements, solar irradiance at different wavelengths and in-situ measurements of plasma/energetic particles/magnetic fields. The DynaMICCS payload uses an original concept studied by Thalès Alenia Space in the framework of the CNES call for formation flying missions: an external occultation of the solar light is obtained by putting an occulter spacecraft 150 m (or more) in front of a second spacecraft. The occulter spacecraft, a LEO platform of the mini sat class, e.g. PROTEUS, type carries the helioseismic and irradiance instruments and the formation flying technologies. The latter spacecraft of the same type carries a visible and infrared coronagraph for a unique observation of the solar corona and instrumentation for the study of the solar wind and imagers. This mission must guarantee long (one 11-year solar cycle) and continuous observations (duty cycle > 94%) of signals that can be very weak (the gravity mode detection supposes the measurement of velocity smaller than 1 mm/s). This assumes no interruption in observation and very stable thermal conditions. The preferred orbit therefore is the L1 orbit, which fits these requirements very well and is also an attractive environment for the spacecraft due to its low radiation and low perturbation (solar pressure) environment. This mission is secured by instrumental R and D activities during the present and coming years. Some prototypes of different instruments are already built (GOLFNG, SDM) and the performances will be checked before launch on the ground or in space through planned missions of CNES and PROBA ESA missions (PICARD, LYRA, maybe ASPIICS).  相似文献   
2.
The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope onboard ESA’s Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54×54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS–APS detector. This article provides reference documentation for users of the SWAP image data.  相似文献   
3.
EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission   总被引:10,自引:0,他引:10  
The Extreme-ultraviolet Imaging Telescope (EIT) will provide wide-field images of the corona and transition region on the solar disc and up to 1.5 R above the solar limb. Its normal incidence multilayer-coated optics will select spectral emission lines from Fe IX (171 ), Fe XII (195 ), Fe XV (284 ), and He II (304 ) to provide sensitive temperature diagnostics in the range from 6 × 104 K to 3 × 106 K. The telescope has a 45 x 45 arcmin field of view and 2.6 arcsec pixels which will provide approximately 5-arcsec spatial resolution. The EIT will probe the coronal plasma on a global scale, as well as the underlying cooler and turbulent atmosphere, providing the basis for comparative analyses with observations from both the ground and other SOHO instruments. This paper presents details of the EIT instrumentation, its performance and operating modes.  相似文献   
4.
The Heliospheric Imagers Onboard the STEREO Mission   总被引:1,自引:0,他引:1  
Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA’s STEREO mission view, for the first time, the space between the Sun and Earth. These instruments are wide-angle visible-light imagers that incorporate sufficient baffling to eliminate scattered light to the extent that the passage of solar coronal mass ejections (CMEs) through the heliosphere can be detected. Each HI instrument comprises two cameras, HI-1 and HI-2, which have 20° and 70° fields of view and are off-pointed from the Sun direction by 14.0° and 53.7°, respectively, with their optical axes aligned in the ecliptic plane. This arrangement provides coverage over solar elongation angles from 4.0° to 88.7° at the viewpoints of the two spacecraft, thereby allowing the observation of Earth-directed CMEs along the Sun?–?Earth line to the vicinity of the Earth and beyond. Given the two separated platforms, this also presents the first opportunity to view the structure and evolution of CMEs in three dimensions. The STEREO spacecraft were launched from Cape Canaveral Air Force Base in late October 2006, and the HI instruments have been performing scientific observations since early 2007. The design, development, manufacture, and calibration of these unique instruments are reviewed in this paper. Mission operations, including the initial commissioning phase and the science operations phase, are described. Data processing and analysis procedures are briefly discussed, and ground-test results and in-orbit observations are used to demonstrate that the performance of the instruments meets the original scientific requirements.  相似文献   
5.
We show for the first time images of solar coronal mass ejections (CMEs) viewed using the Heliospheric Imager (HI) instrument aboard the NASA STEREO spacecraft. The HI instruments are wide-angle imaging systems designed to detect CMEs in the heliosphere, in particular, for the first time, observing the propagation of such events along the Sun – Earth line, that is, those directed towards Earth. At the time of writing the STEREO spacecraft are still close to the Earth and the full advantage of the HI dual-imaging has yet to be realised. However, even these early results show that despite severe technical challenges in their design and implementation, the HI instruments can successfully detect CMEs in the heliosphere, and this is an extremely important milestone for CME research. For the principal event being analysed here we demonstrate an ability to track a CME from the corona to over 40 degrees. The time – altitude history shows a constant speed of ascent over at least the first 50 solar radii and some evidence for deceleration at distances of over 20 degrees. Comparisons of associated coronagraph data and the HI images show that the basic structure of the CME remains clearly intact as it propagates from the corona into the heliosphere. Extracting the CME signal requires a consideration of the F-coronal intensity distribution, which can be identified from the HI data. Thus we present the preliminary results on this measured F-coronal intensity and compare these to the modelled F-corona of Koutchmy and Lamy (IAU Colloq. 85, 63, 1985). This analysis demonstrates that CME material some two orders of magnitude weaker than the F-corona can be detected; a specific example at 40 solar radii revealed CME intensities as low as 1.7×10−14 of the solar brightness. These observations herald a new era in CME research as we extend our capability for tracking, in particular, Earth-directed CMEs into the heliosphere.  相似文献   
6.
Eit and LASCO Observations of the Initiation of a Coronal Mass Ejection   总被引:2,自引:0,他引:2  
We present the first observations of the initiation of a coronal mass ejection (CME) seen on the disk of the Sun. Observations with the EIT experiment on SOHO show that the CME began in a small volume and was initially associated with slow motions of prominence material and a small brightening at one end of the prominence. Shortly afterward, the prominence was accelerated to about 100 km s-1 and was preceded by a bright loop-like structure, which surrounded an emission void, that traveled out into the corona at a velocity of 200–400 km s-1. These three components, the prominence, the dark void, and the bright loops are typical of CMEs when seen at distance in the corona and here are shown to be present at the earliest stages of the CME. The event was later observed to traverse the LASCO coronagraphs fields of view from 1.1 to 30 R⊙. Of particular interest is the fact that this large-scale event, spanning as much as 70 deg in latitude, originated in a volume with dimensions of roughly 35" (2.5 x 104 km). Further, a disturbance that propagated across the disk and a chain of activity near the limb may also be associated with this event as well as a considerable degree of activity near the west limb.  相似文献   
7.
CMOS-APS imaging detectors open new opportunities for remote sensing in solar physics beyond what classical CCDs can provide, offering far less power consumption, simpler electronics, better radiation hardness, and the possibility of avoiding a mechanical shutter. The SWAP telescope onboard the PROBA2 technology demonstration satellite of the European Space Agency will be the first actual implementation of a CMOS-APS detector for solar physics in orbit. One of the goals of the SWAP project is precisely to acquire experience with the CMOS-APS technology in a real-live space science context. Such a precursor mission is essential in the preparation of missions such as Solar Orbiter where the extra CMOS-APS functionalities will be hard requirements. The current paper concentrates on specific CMOS-APS issues that were identified during the SWAP preflight calibration measurements. We will discuss the different readout possibilities that the CMOS-APS detector of SWAP provides and their associated pros and cons. In particular we describe the “image lag” effect, which results in a contamination of each image with a remnant of the previous image. We have characterised this effect for the specific SWAP implementation and we conclude with a strategy on how to successfully circumvent the problem and actually take benefit of it for solar monitoring.  相似文献   
8.
The SECCHI Heliospheric Imager (HI) instruments on-board the STEREO spacecraft have been collecting images of solar wind transients, including coronal mass ejections, as they propagate through the inner heliosphere since the beginning of 2007. The scientific use of the images depends critically on the performance of the instruments and its evolution over time. One of the most important factors affecting the performance of the instrument is the rejection of straylight from the Sun and from other bright objects located both within and outside the HI fields of view. This paper presents an analysis of the evolution of the straylight-rejection performance of the HI instrument on each of the two STEREO spacecraft over the three first years of the mission. The straylight level has been evaluated and expressed in mean solar brightness units, in which such scientific observations are usually quoted, using photometric conversion factors.  相似文献   
9.
The Sun Watcher with Active Pixel System detector and Image Processing (SWAP) telescope was launched on 2 November 2009 onboard the ESA PROBA2 technological mission and has acquired images of the solar corona every one to two minutes for more than two years. The most important technological developments included in SWAP are a radiation-resistant CMOS-APS detector and a novel onboard data-prioritization scheme. Although such detectors have been used previously in space, they have never been used for long-term scientific observations on orbit. Thus SWAP requires a careful calibration to guarantee the science return of the instrument. Since launch we have regularly monitored the evolution of SWAP’s detector response in-flight to characterize both its performance and degradation over the course of the mission. These measurements are also used to reduce detector noise in calibrated images (by subtracting dark-current). Because accurate measurements of detector dark-current require large telescope off-points, we also monitored straylight levels in the instrument to ensure that these calibration measurements are not contaminated by residual signal from the Sun. Here we present the results of these tests and examine the variation of instrumental response and noise as a function of both time and temperature throughout the mission.  相似文献   
10.
Dere  K.P.  Moses  J.D.  Delaboudinière  J.-P.  Brunaud  J.  Carabetian  C.  Hochedez  J.-F.  Song  X.Y.  Catura  R.C.  Clette  F.  Defise  J.-M. 《Solar physics》2000,195(1):13-44
This paper presents the preflight photometric calibration of the Extreme-ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). The EIT consists of a Ritchey–Chrétien telescope with multilayer coatings applied to four quadrants of the primary and secondary mirrors, several filters and a backside-thinned CCD detector. The quadrants of the EIT optics were used to observe the Sun in 4 wavelength bands that peak near 171, 195, 284, and 304 Å. Before the launch of SOHO, the EIT mirror reflectivities, the filter transmissivities and the CCD quantum efficiency were measured and these values are described here. The instrumental throughput in terms of an effective area is presented for each of the various mirror quadrant and filter wheel combinations. The response to a coronal plasma as a function of temperature is also determined and the expected count rates are compared to the count rates observed in a coronal hole, the quiet Sun and an active region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号