首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
海洋学   15篇
  2014年   1篇
  2008年   2篇
  2007年   1篇
  2000年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Standing stocks and production rates of phytoplankton and planktonic copepods were investigated at 15 stations in the Inland Sea of Japan during four cruises in October–November 1979, January, April and June 1980. The overall mean of phytoplankton biomass was relatively constant during the study period, ranging from 2.3 mg chl.a m–3 in April to 3.6 mg chl.a m–3 in October–November. Primary production was low in January (mean: 90 mg C m–2 d–1), but higher than 375 mg C m–2 d–1 on the other occasions. Integrated annual primary production was 122 g C m–2 yr–1. In terms of carbon weight,Paracalanus parvus was the most important copepod species. The variation of the mean copepod biomass (range: 7.6 mg C m–3 in April to 20.2 mg C m–3 in June) was smaller than that of copepod production, which was estimated by the Ikeda-Motoda's physiological method. Copepod producion was low in cold seasons (0.6 and 0.9 mg C m–3 d–1 in January and April, respectively), and increased, following the elevation of primary production, to 4.9 mg C m–3 d–1 in June. Annual copepod production was 33.7 g C m–2 yr–1, of which herbivore (secondary) production was 26.4 g C m–2 yr–1 (21.7% of primary production). The ratios of pelagic planktivorous fish catch and total fish catch to the primary production were 0.82 and 1.8%, respectively, indicating very high efficiency in exploiting fishery resources in the Inland Sea of Japan.  相似文献   
2.
Zooplankton play a key role in the pelagic foodweb by controllingphytoplankton production and shaping pelagic ecosystems. Inaddition, because of their critical role as a food source forlarval and juvenile fish, the dynamics of zooplankton populationshave a significant influence on recruitment to fish stocks.In 1961, ICES convened the First Zooplankton Production Symposiumin Charlottenlund, Denmark. ICES also played a leading rolein the Second Zooplankton Production Symposium on "ZooplanktonProduction: measurement and role in global  相似文献   
3.
Measurements of dry weight, carbon- and nitrogen contents together with the body length of important zooplankton from the Inland Sea of Japan were made using freshly caught specimens. The values of the former three parameters were found to be highly correlated to length, and species specific regression equations were calculated for 10 species of Copepoda (Calanus sinicus, Euchaeta plana, E. concinna, Centropages abdominalis, Sinocalanus tenellus, Acartia clausi, A. tsuensis, Tortanus forcipatus, Oithona brevicornis andO. similis), 3 species of Cladocera (Podon leuckarti, P. polyphemoides andPenilia avirostris), 1 species of each of Mysidacea (Neomysis japonica), and Natantia (Acetes japonicus), and two forms of Chaetognatha (Sagitta crassa andS. crassa f.naikaiensis).  相似文献   
4.
It is indeed my great honor to receive the Okada Prize (1983) for my studies on the population dynamics and production of inshore marine copepods. This article summarizes the lecture I gave under the above title. It has long been postulated that there is some mechanism whereby a species can repopulate after its disappearance from the plankton, since the appearance of many temperature marine copepods clearly occurs on a seasonal basis. During the last decade, evidence of resting egg production has been found for more than 20 species belonging to Temoridae, Centropagidae, Pontellidae, Acartiidae and Tortanidae. In the Inland Sea of Japan, a summer-fall copepodTortanus forcipatus lays diapause (obligatory resting) eggs in the fall, which overwinter in the sediment on the sea floor until the following summer when water temperature reachesca. 15°C. On the other hand, in Onagawa Bay,Acartia clausi is perennial and produces only subitaneous eggs, many of which, however, sink to the bottom and undergo quiescence (facultative resting eggs) due to adverse environmental conditions (e.g. low temperature, deoxygenation, darkness). There are a large quantity (0.5–2.0×106 eggs m−2) ofA. clausi resting eggs in the sediments of Onagawa Bay, which may play an important role in maintaining a more constant planktonic population. The parameters of population dynamics,i.e. the rates of egg production, recruitment and mortality, have been analyzed forA. clausi in Onagawa Bay, by an integration of field and laboratory studies. Recruitment into the planktonic population older than NIII only accounts for 10–20% of egg production. This apparent loss of eggs, which coincides with the benthic resting phase, may be a characteristic feature of the population dynamics of this species. Stage-specific mortality is generally similar in most of the stages, although CI and CVI suffer more severe mortality, possibly as a result of great morphological change in the former stage and heavy predations in the latter. The seasonal change in daily production byA. clausi has also been investigated, its annual production being 2.45 gC m−2. Daily production and biomass (P:B) ratios increase linearly with temperature. Estimated values of production for other inshore marine copepods are reviewed in relation to P:B ratios and the ratio between secondary and primary production.  相似文献   
5.
We measured the ammonium excretion, phosphate excretion and respiration rates of the scyphomedusa Aurelia aurita from Ondo Strait, in the central part of the Inland Sea of Japan, at 28 and 20°C. The rates measured at 28°C were converted to those at 20°C using the Q10 values, i.e. 1.56, 1.57 and 2.80, for ammonium excretion, phosphate excretion and respiration rates, respectively. The composite relationships between metabolic rates and wet weight of a medusa (WW, g, range 11–1330 g) at 20°C were expressed by the following allometric equations. For ammonium excretion rate (N, μmoles N medusa−1d−1): N = 0.497WW 1.09, phosphate excretion rate (P, μmoles P medusa−1d−1): P = 0.453WW 0.84, and respiration rate (R, μmoles O2 medusa−1d−1): R = 96.9WW 1.06. Mean O:N ratios (i.e. atomic ratios of 16.9 and 11.0 at 28 and 20°C, respectively) indicated that the metabolism of A. aurita medusae was protein-dominated. These metabolic parameters enabled us to estimate the nitrogen and phosphorus regeneration rates of an A. aurita medusa population typical of early summer in the Ondo Strait (means of water temperature, medusa individual weight and population biomass: 20°C, 200 g WW and 50.8 g WW m−3, respectively). Regenerated nitrogen and phosphorus were equivalent to 10.0 and 21.6% of phytoplankton uptake rates, respectively, nearly twice that estimated for mesozooplankton, demonstrating that A. aurita medusae are key components of the plankton community, influencing the trophic and nutrient dynamics in the Ondo Strait during early summer.  相似文献   
6.
Measurements of fecal pellet volume together with body length/body carbon weight were made for major zooplankters of the Inland Sea of Japan. The pellet volume was highly correlated with animal body size for copepods (10 species combined), a mysid (Neomysis japonica), a larvacean (Oikopleura dioica) and a pelagic shrimp (Acetes japonicus), and a specific equation was given for each group. A single equation could describe the composite relationship between pellet volume (PV, m3) and body carbon weight (C, g) for copepods andN. japonica: logPV=0.85logC+4.56. Balanid nauplii,O. dioica and a doliolidDolioletta gegenbauri produced pellets larger, butA. japonicus produced pellets smaller, than those by copepods andN. japonica of equivalent body carbon weight. In general, larger zooplankters produce larger fecal pellets. Hence, the size composition of the zooplankton community is an important parameter for the variation in the vertical flux of material via fecal pellets.  相似文献   
7.
A total of 293 measurements of respiration rate were made on planktonic crustaceans collected in different seasons from the Inland Sea of Japan. The relationship between the rate of oxygen consumption (R,μl O2 indiv.−1 hr−1) and body dry weight (W, mg indiv.−1), as expressed by a power function (R=aW b , or logR=loga+b logW), was established as a function of temperature (T, °C). The slope of the regression equation (b) was not significantly affected by seasonal temperature variation, but the intercept of the equation (loga) was strongly influenced by temperature. The equation describing this general relation is logR=(0.0444T−0.333)+0.713 logW.  相似文献   
8.
We investigated the geographical variations in abundance and biomass of the major taxonomic groups of micro- and net-zooplankton along a transect through Ise Bay, central Japan, and neighboring Pacific Ocean in February 1995. The results were used to estimate their secondary and tertiary production rates and assess their trophic roles in this eutrophic embayment in winter. Ise Bay nourished a much higher biomass of both micro- and net-zooplankton (mean: 3.79 and 13.9 mg C m–3, respectively) than the offshore area (mean: 0.76 and 4.47 mg C m–3, respectively). In the bay, tintinnid ciliates, naked ciliates and copepod nauplii accounted for, on average, 69, 18 and 13% of the microzooplankton biomass, respectively. Of net-zooplankton biomass, copepods (i.e. Acartia, Calanus, Centropages, Microsetella and Paracalanus) formed the majority (mean: 63%). Average secondary production rates of micro- and net-zooplankton in the bay were 1.19 and 1.87 mg C m–3d–1 (or 23.1 and 36.4 mg C m–2d–1), respectively, and average tertiary production rate of net-zooplankton was 0.75 mg C m–3d–1 (or 14.6 mg C m–2d–1). Available data approximated average phytoplankton primary production rate as 1000 mg C m–2d–1 during our study period. The transfer efficiency from primary production to zooplankton secondary production was 6.0%, and the efficiency from secondary production to tertiary production was 25%. The amount of food required to support the zooplankton secondary production corresponded to 18% of the phytoplankton primary production or only 1.7% of the phytoplankton biomass, demonstrating that the grazing impact of herbivorous zooplankton was minor in Ise Bay in winter.  相似文献   
9.
Organic carbon flux from eutrophicated Tokyo Bay to the Pacific Ocean is estimated as 260 ton C day–1 based on the horizontal gradient of COD and the dispersion coefficient at the bay mouth. Also, carbon flux from the air or from the open ocean to Tokyo Bay is estimated as 156 ton C day–1. If we suppose that five percent of the coastal seas in the world might be eutrophicated as Tokyo Bay and the organic carbon flux from the shelf to the open ocean in other coastal seas might be one third of that in Tokyo Bay, 1.12 G tons year–1 would be transported from the eutrophicated coastal seas to the open ocean and such carbon flux may account for the missing sink in the global carbon budget.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号