首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   3篇
  国内免费   6篇
大气科学   21篇
地球物理   5篇
地质学   21篇
海洋学   25篇
天文学   7篇
自然地理   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   13篇
  2015年   2篇
  2014年   6篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   12篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1970年   2篇
排序方式: 共有81条查询结果,搜索用时 312 毫秒
1.
Subsolidus phase relations on the join CaMgSi2O6-CaFe3+ AlSiO6-CaTiAl2O6 were studied by the ordinary quenching method at \(f_{O_2 } = 10^{ - 11} \) atm and 1,100°C. Crystalline phases encountered are clinopyroxeness (ss:solid solution) (Cpxss), melilite (Mel), perovskite (Pv), spinelss (Spss), magnetitess (Mtss) and anorthite (An). There is no Cpxss single phase field, and the following assemblages were found; Cpxss+Mel, Cpxss+Mel+Spss, Cpxss+Mel+Pv, Cpxss+Mel+Spss+Pv, Cpxss+Pv+Spss+An, Spss+Pv+Mel+An+Cpxss, Mel+Mtss+An+Spss+Cpxss+liquid and Mel+Mtss+An+Spss+Cpxss+Pv. Mössbauer spectral study revealed that Cpxss contains both Fe2+ and Fe3+ in the octahedral site, and it was confirmed that the CaFe3+ AlSiO6 content in the Cpxss at low \(f_{O_2 } \) is considerably less than that in the Cpxss crystallized in air, whereas the CaFe2+Si2O6 component increases. The maximum solubility of CaTlAl2O6 component in the Cpxss at low \(f_{O_2 } \) is higher than that in air. The decrease of CaFe3+ AlSiO6 in the Cpxss at low \(f_{O_2 } \) may cause increase of CaTial2O6 in the Cpxss.  相似文献   
2.
Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific Western Subarctic Gyre (WSG) revealed seasonal changes in δ 15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting sediment traps (DST; 100–200 m) and moored sediment traps (MST; 200 and 500 m). All particles showed higher δ 15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ 15N(SUS) of 0.4–3.1 ‰ in the euphotic zone (EZ). The δ 15N(SUS) signature was reflected by δ 15N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ 15N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ 15N(DST) variations of 2.4–7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ 15N(DST) vs. PP regression to δ 15N(MST) of 1.9–8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. This new approach to estimate productivity can be a powerful tool for further understanding of the biological pump in the WSG, even though its validity needs to be examined carefully.  相似文献   
3.
4.
Marine Geophysical Research - In the original publication, the Fig. 2 was published incorrectly. The correct version (Fig. 2) is given in this correction. The original article has been...  相似文献   
5.
6.
As reported in former studies, temperature observations obtained by expendable bathythermographs (XBTs) and mechanical bathythermographs (MBTs) appear to have positive biases as much as they affect major climate signals. These biases have not been fully taken into account in previous ocean temperature analyses, which have been widely used to detect global warming signals in the oceans. This report proposes a methodology for directly eliminating the biases from the XBT and MBT observations. In the case of XBT observation, assuming that the positive temperature biases mainly originate from greater depths given by conventional XBT fall-rate equations than the truth, a depth bias equation is constructed by fitting depth differences between XBT data and more accurate oceanographic observations to a linear equation of elapsed time. Such depth bias equations are introduced separately for each year and for each probe type. Uncertainty in the gradient of the linear equation is evaluated using a non-parametric test. The typical depth bias is +10 m at 700 m depth on average, which is probably caused by various indeterminable sources of error in the XBT observations as well as a lack of representativeness in the fall-rate equations adopted so far. Depth biases in MBT are fitted to quadratic equations of depth in a similar manner to the XBT method. Correcting the historical XBT and MBT depth biases by these equations allows a historical ocean temperature analysis to be conducted. In comparison with the previous temperature analysis, large differences are found in the present analysis as follows: the duration of large ocean heat content in the 1970s shortens dramatically, and recent ocean cooling becomes insignificant. The result is also in better agreement with tide gauge observations. On leave from the Meteorological Research Institute of the Japan Meteorological Agency.  相似文献   
7.
The distribution of Fe3+ and Ga3+ between the two tetrahedral sites in three synthetic melilites has been studied by using 57Fe Mössbauer spectroscopy. In the melilite, (Ca2Ga2SiO7)50 (Ca2Fe3+GaSiO7)50 (mol %), the distribution of Fe3+ and Ga3+ in T1 and T2 sites is apparently random, which can be explained in terms of the electrostatic valence rule. However in the melilites, (Ca2MgSi2O7)52 (Ca2Fe3+GaSiO7)42 (Ca2Ga2SiO7)6 and (Ca2MgSi2O7)62 (Ca2Fe3+GaSiO7)36 (Ca2Ga2SiO7)2 (mol %), Fe3+ shows preference for the more ionic T1 site and Ga3+ for the more covalent T2 site. If the electronegativity of Ga3+ is assumed to be larger than that of Fe3+, the mode of distribution of Fe3+ and Ga3+ can be explained in terms of our previous hypothesis that a large electronegativity induces a stronger preference for the more covalent T2 site.  相似文献   
8.
The system CaMgSi2O6CaAl2SiO6CaFeAlSiO6 has been studied in air at 1 atm. The phase assemblage at subsolidus temperatures in the CaMgSi2O6-rich portion is Cpx + An + Mel and that in the CaMgSi2O6-poor portion Cpx + An + Mel + Sp. At subsolidus temperatures the sigle-phase field of clinopyroxene increases with an increase in the CaFeAlSiO6 component of the system. The Al2O3 content of clinopyroxene, however, continues to increase beyond the single-phase field and attains at least 16.04 wt.% Al2O3 with 3.9 wt.% Fe2O3. The stability field of fassaite in the system over a range of pressures and oxygen fugacities has been estimated from data in the literature as well as the present data. The CaFeAlSiO6 content of fassaite is dependent on oxygen fugacity, but is not influenced by pressure. The stability field is strongly influenced by oxygen fugacity at low and high pressure, and decreases with decreasing oxygen fugacity. Clinopyroxenes in both volcanic and metamorphic rocks from various localities, when plotted on the CaMgSi2O6CaAl2SiO6CaFeAlSiO6 triangle, show that there is no compositional gap between diopside and fassaitic pyroxene in metamorphic rocks, and that the fassaitic pyroxene in alkalic rocks becomes richer in both CaAl2SiO6 and CaFeAlSiO5 components as crystallization proceeds. These results agree with those obtained in the experimental study.  相似文献   
9.
Tadao  Nishiyama  Aiko  Tominaga  Hiroshi  Isobe 《Island Arc》2007,16(1):16-27
Abstract We carried out hydrothermal experiments in the system dolomite‐quartz‐H2O to track the temporal change in reaction rates of simultaneous reactions during the development of reaction zones. Two types of configurations for the starting materials were prepared: dolomite single crystals + quartz powder + water and quartz single crystals + dolomite powder + water, both sealed separately in gold capsules. Runs at 0.1GPa and 600°C with cold seal pressure vessels gave the following results. (i) In short duration (45–71 h) runs metastable layer sequences involving wollastonite and talc occur in the reaction zone, whereas they disappear in longer duration (168–336 h) runs. (ii) The layer sequence of the reaction zones in short duration runs differs from place to place on the dolomite crystal even in the same run. (iii) The diversity of layer sequences in the short duration runs merges into a unique layer sequence in the longer duration runs. (iv) The reaction zone develops locally on the dolomite crystal, but no reaction zone was observed on the quartz crystal in any of the runs. The lines of evidence (i)–(iii) show that the system evolves from an initial transient‐ to a steady‐state and that the kinetic effect is important in the development of reaction zones. A steady diffusion model for the unique layer sequence Qtz/Di/Fo + Cal/Dol + Cal/Dol shows that the Dol + Cal layer cannot be formed by diffusion‐controlled process and that the stability of the layer sequence Qtz/Di/Fo + Cal/Dol depends not only on L‐ratios (a = /LCaOCaO and b = /LMgOMgO) but also on the relative rate P = (−2ξ1ξ2)/(–ξ1 − 2ξ2) of competing reactions: Dol + 2Qtz = Di + 2CO2 (ξ1) and 2Dol + Qtz = Fo + 2Cal + 2CO2 (ξ2). For smaller P the stability field will shift to higher values of a and b. The steady diffusion model also shows that the apparent‐non‐reactivity on the quartz surface can be attributed to void formation in a large volume fraction in the diopside layer.  相似文献   
10.
Chemical compositions of tetrahedrite—Ag-rich tetrahedrite—freibergite solid solutions (Ag-rich tetrahedritess) and homogenization temperatures of fluid inclusions in quartz and carbonates of seventeen samples from nine veins in the El Zancudo deposit, Antioquia, Colombia, were investigated to reveal the origin of silver in Ag-rich tetrahedritess, to derive their crystallization temperatures and to examine the relationship between chemical compositions of Ag-rich tetrahedritess and their crystallization temperatures. The ores consist of arsenopyrite, pyrite, sphalerite, Ag-rich tetrahedritess, galena, boulangerite, andorite, owyheeite, diaphorite, jamesonite, miargyrite, bournonite, chalcopyrite, and electrum. Ag-rich tetrahedritess forms about 10 volume % of the total ores and is one of the most common and widely distributed sulfosalts in this deposit. Ag-rich tetrahedritess is rich in Ag (1.13 to 31.02 wt%) and Sb (22.93 to 29.82 wt%), and poor in As (0.06 to 2.43 wt%), consistent with the reported incompatibilities of Ag and As in Ag-rich tetrahedritess. The Zn/(Zn + Fe)-, Ag/(Ag + Cu)- and Sb/(Sb + As + Bi)-atomic ratios exhibit some variations among the veins. Ag-rich tetrahedritess with higher Ag/(Ag + Cu) ratios coexist with diaphorite, whereas those with lower ratios are not associated with this sulfosalt. Ag-rich tetrahedritess in the assemblages of Ag-rich tetrahedritess+ sphalerite and of Ag-rich tetrahedritess+ bournonite + galena shows no Zn ↔ Fe and Cu ↔ Ag variations between core and rim, respectively, negating the possibility of solid state reaction during cooling. Ag-rich tetrahedritess is thus regarded as primary phase. Homogenization temperatures of primary fluid inclusions in quartz and carbonates co-existing with Ag-rich tetrahedritess define the mineralization temperatures of 134 to 263°C. Independent crystallization temperatures of Ag-rich tetrahedrite estimated based on Zn/(Zn + Fe) and Ag/(Ag + Cu) ratios of the Ag-rich tetrahedritess associated with silver minerals such as miargyrite, andorite and diaphorite using Sack's thermochemical database lie in a range between 170 and ∼250°C. Both results are thus in good agreement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号